Could the tip chamfer that manufacturing people usually use on the tips of gear teeth be the cause of vibration in the gear set? The set in question is spur, of 2.25 DP, with 20 degrees pressure angle. The pinion has 14 teeth and the mating gear, 63 teeth. The pinion turns at 535 rpm maximum. Could a chamfer a little over 1/64" cause a vibration problem?
The paper describes a procedure for the design of internal gear pairs, which is a generalized form of the long and short addendum system. The procedure includes checks for interference, tip interference, undercutting, tip interference during cutting, and rubbing during cutting.
Since size and efficiency are increasingly important considerations in modern machinery, the trend is gear design is to use planetary gearing instead of worm gearing and multi-stage gear boxes. Internal gearing is an important part of most of planetary gear assemblies. In external gearing, if the gears are standard (of no-modified addenda), interference rarely happens. But in an internal gearing, especially in some new types of planetary gears, such as the KHV planetary, the Y planetary, etc., (1) various types of interference may occur. Therefore, avoiding interference is of significance for the design of internal gearing.
These lines, interesting enough, are from the notebooks of an artist whose images are part of the basic iconography of Western culture. Even people who have never set foot in a museum and wouldn't know a painting by Corregio from a sculpture by Calder, recognize the Mona Lisa. But Leonardo da Vinci was much more than an artist. He was also a man of science who worked in anatomy, botany, cartography, geology, mathematics, aeronautics, optics, mechanics, astronomy, hydraulics, sonics, civil engineering, weaponry and city planning. There was little in nature that did not interest Leonardo enough to at least make a sketch of it. Much of it became a matter of lifelong study. The breadth of his interests, knowledge, foresight, innovation and imagination is difficult to grasp.
November 1-3. SME Gear Processing and Manufacturing Clinic, Sheraton Meridian, Indianapolis, IN.
November 5-10. international Conference on Gearing, Zhengzhou, China
Involute spur gears are very sensitive to gear misalignment. Misalignment will cause the shift of the bearing contact toward the edge of the gear tooth surfaces and transmission errors that increase gear noise. Many efforts have been made to improve the bearing contact of misaligned spur gears by crowning the pinion tooth surface. Wildhaber(1) had proposed various methods of crowning that can be achieved in the process of gear generation. Maag engineers have used crowning for making longitudinal corrections (Fig. 1a); modifying involute tooth profile uniformly across the face width (Fig. 1b); combining these two functions in Fig. 1c and performing topological modification (Fig. 1d) that can provide any deviation of the crowned tooth surface from a regular involute surface. (2)
Although there is plenty of information and data on the determination of geometry factors and bending strength of external gear teeth, the computation methods regarding internal gear design are less accessible. most of today's designs adopt the formulas for external gears and incorporate some kind of correction factors for internal gears. However, this design method is only an approximation because of the differences between internal gears and external gears. Indeed, the tooth shape of internal gears is different from that of external gears. One has a concave curve, while the other has a convex curve.
The geometry factor, which is a fundamental part of the AGMA strength rating of gears, is currently computed using the Lewis parabola which allows computation of the Lewis form factor.(1) The geometry factor is obtained from this Lewis factor and load sharing ratio. This method, which originally required graphical construction methods and more recently has been computerized, works reasonably well for external gears with thick rims.(2-6) However, when thin rims are encountered or when evaluating the strength of internal gears, the AGMA method cannot be used.