Transmission of power between nonparallel shafts is inherently more difficult than transmission between parallel shafts, but is justified when it saves space and results in more compact, more balanced designs. Where axial space is limited compared to radial space, angular drives are preferred despite their higher initial cost. For this reason, angular gear motors and worm gear drives are used extensively in preference to parallel shaft drives, particularly where couplings, brakes, and adjustable mountings add to the axial space problem of parallel shaft speed reducers.
The effect of various lubricant factors on wormgear efficiency has been evaluated using a variety of gear types and conditions. In particular, the significant efficiency improvements
afforded by certain types of synthetic
lubricants have been investigated to determine the cause of these improvements. This paper describes broad wormgear testing, both in the
laboratory and in service, and describes the extent to which efficiency can be affected by
changes in the lubricant; the effects of viscosity, viscosity index improvers and, finally, synthetic lubricants are discussed. The work concludes that lubricant tractional properties
can play a significant role in determining gear efficiency characteristics.
Worm gearing is of great antiquity, going back about 2100 years to Archimedes, who is generally acknowledged as its inventor.
Archimedes' concept used an Archimedial spiral to rotate a toothed wheel. Development of the worm gearing principle progressed along conventional lines until about 500 years ago when Leonardo DaVinci evolved the double enveloping gear concept.
What was once recognized as the unique
genius of America is now slipping away
from us and, in many areas, is now seen as a "second rate" capability. Unless
action is taken now, this country
is in real danger of being unable to regain its supremacy in technological development and economic vigor. First Americans must understand the serious implications of the problem; and second, we must dedicate ourselves to national and local actions that will ensure a greater scientific and
technological literacy in America.
Borazon is a superabrasive material originally developed by General Electric in 1969. It is a high performance material for machining of high alloy ferrous and super alloy materials. Borazon CBN - Cubic Born Nitride - is manufactured with a high temperature, high pressure process similar to that utilized with man-made diamond. Borazon is, next to diamond, the hardest abrasive known; it is more than twice as hard as aluminum oxide. It has an extremely high thermal strength compared to diamond. It is also much less chemically reactive with
iron, cobalt or nickel alloys.