The gear industry, like any other, is constantly changing. Companies vie for customers, resources, employees and time. They come, go and shuffle for position. Usually, the changes are small, affecting only a few companies. But sometimes, many changes happen at once, and when those changes are large, it can seem as though an earthquake has struck and transformed the landscape of the industry.
In effect, this article continues a previous Gear Technology article, "Modeling Gears In Pro/Engineer," published in the January/February 1999 issue. The previous article discussed drawing involute gear teeth using a program built into the Pro/E software.
Bodine Electric Co. of Chicago, IL., has a 97-year history of fine-and medium-pitch gear manufacturing. Like anywhere else, traditions, old systems, and structures can be beneficial, but they can also become paradigms and obstacles to further improvements. We were producing a high quality product, but our goal was to become more cost effective. Carbide hobbing is seen as a technological innovation capable of enabling a dramatic, rather than an incremental, enhancement to productivity and cost savings.
The lifetime of worm gears is usually delimited by the bronze-cast worm wheels. The following presents some optimized cast bronzes, which lead to a doubling of wear resistance.
There are numerous engineering evaluations required to design gear sets for optimum performance with regard to torque capacity, noise, size and cost. How much cost savings and added gear performance is available through optimization? Cost savings of 10% to 30% and 100% added capacity are not unusual. The contrast is more pronounced if the original design was prone to failure and not fit for function.
Welcome to Revolutions, the column that brings you the latest, most up-to-date and easy-to-read information about the people and technology of the gear industry.