This article discusses applications of statistical process capability indices for controlling the quality of tooth geometry characteristics, including profile and lead as defined by current AGMA-2015, ISO-1328, and DIN-3960 standards. It also addresses typical steps to improve manufacturing process capability for each of the tooth geometry characteristics when their respective capability indices point to an incapable process.
Statistical Precess Control (SPC) and statistical methods in general are useful techniques for identifying and solving complex gear manufacturing consistency and performance problems. Complex problems are those that exist in spite of our best efforts and the application of state-of-the-art engineering knowledge.
A common goal of gear manufacturers is to produce gearing that is competitively priced, that meets all quality requirements with the minimum amount of cost in a timely manner, and that satisfies customers' expectations.
In order to optimize this goal, the gear manufacturer must thoroughly understand each manufacturing process specified, the performance capability of that process, and the effect of that particular process as it relates to the quality of the manufactured gear. If the wrong series of processes has been selected or a specific selected process is not capable of producing a quality part, manufacturing costs are greatly increased.