Gaging evolves for precision, productivity, ergonomics and more
June 12, 2024
For precision measuring, skilled machinists, toolmakers, and inspectors must have accurate tools and gages, produced from quality materials, carefully manufactured, and rigidly inspected, to ensure lasting dependability. Gages have evolved throughout the years beginning with mechanical, then electronic models, and now convenient wireless electronic versions have come on the scene. Each type has an important place in today’s quality control and inspection processes.
Shop floor inspection and gaging equipment is putting advanced metrology systems right on the factory floor. Here’s a collection of articles on shop floor inspection and gages from companies like Gleason, Mahr, Comtorgage, United Tool Supply and Frenco.
The purpose of this article is to discuss ISO 4156/ANSI B92.2M-1980 and to compare it with other, older standards still in use. In our experience designing and manufacturing spline gauges and other spline measuring or holding devices for splined component manufacturers throughout the world, we are constantly surprised that so many standards have been produced covering what is quite a small subject. Many of the standards are international standards; others are company standards, which are usually based on international standards. Almost all have similarities; that is, they all deal with splines that have involute flanks of 30 degrees, 37.5 degrees or 45 degrees pressure angle and are for the most part flank-fitting or occasionally major-diameter-fitting.
Temperature Induced Dimensional Changes
Temperature causes various materials to change size at different rate, known as their Coefficients of Expansion (COE). The effects of this phenomenon on precision dimensional measurements are continuous and costly to industry. Precautions can be taken to allow parts and gages to temperature stabilize before conducting gage R & R studies, but the fact remains that on the shop floor temperatures vary all the time. The slow pace at which industry has accepted this reality probably has to do with the subtlety of these tiny size variations and our inability to sense gradual, but significant temperature changes.