Widia recently launched the WCE solid end milling platform, delivering affordable performance and reliability for small to medium machine shops. The initial release of the WCE platform features WCE4, a four-flute geometry which combines advanced, high-performance features with a brand new, versatile grade offered at a highly competitive price.
A visit to the HMC Gears plant in Indiana kicked off an extensive project which resulted in the creation of a unique solution for exceptional demands: With the LC 4000, Liebherr forges new paths in large-scale gear cutting production and unites diverse machining methods in one highly efficient
machine for the American gear specialist.
Free form milling of gears becomes more and more important as a flexible machining process for gears. Reasons for that are high degrees of freedom as the usage of universal tool geometry and machine tools is possible. This allows flexible machining of various gear types and sizes with one manufacturing system. This paper deals with manufacturing, quality and performance of gears made by free form milling. The focus is set on specific process properties of the parts. The potential of free form milling is investigated in cutting tests of a common standard gear. The component properties are analyzed and flank load-carrying capacity of the gears is derived by running trials on back-to-back test benches. Hereby the characteristics of gears made by free form milling and capability in comparison with conventionally manufactured gears will be shown.
Exciting new machine, cutting tool and software technologies are compelling
many manufacturers to take a fresh look at producing their larger gears on machining centers. They're faster than ever, more flexible, easy to operate, highly affordable - and for any type of gear.
What is the best tooling to use when hard milling a gear tooth on a 5-axis machining center? And what makes it the best? We have just bought a DMG Mori mono-block and are not getting the finishes at the cycle times we require.
Developed here is a new method to automatically find the optimal topological modification from the predetermined measurement grid points for bevel gears. Employing this method
enables the duplication of any flank form of a bevel gear given by the measurement points and the creation of a 3-D model for CAM machining in a very short time. This method not only
allows the user to model existing flank forms into 3-D models, but also can be applied for various other purposes, such as compensating for hardening distortions and manufacturing deviations which are very important issues but not yet solved in the practical milling process.
The recently available capability for the free-form milling of gears of various gear types and sizes — all within one manufacturing system — is becoming increasingly recognized as a flexible machining process for gears.
Look beyond the obvious, and you may
well find a better way to machine a part,
and serve your customer better. That’s
the lesson illustrated in a gear machining
application at Allied Specialty
Precision Inc. (ASPI), located in Mishawaka, Indiana.