Planetary gear transmissions are compact, high-power speed reducers that use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single-plane transmission, the planet gear has no size of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary transmission with a fixed size, gear ratio, input speed, power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives, which point to an optimal planetary reduction ratio in the neighborhood of four to five.
When designing a gear set, engineers usually want the teeth of the gear (Ng) and the pinion (Np) in a "hunting" mesh. Such a mesh or combination is defined as one in which the pinion and the gear do not have any common divisor by a prime number. If a mesh is "hunting," then the pinion must make Np x Ng revolutions before the same pinion tooth meshes with the same gear space. It is often easy to determine if a mesh is hunting by first determining if both the pinion and the gear teeth are divisible by 2,3,5,7,etc. (prime numbers). However, in this age of computerization, how does one program the computer to check for hunting teeth? A simple algorithm is shown below.