A very important parameter when designing a gear pair is the maximum surface contact stress that exists between two gear teeth in mesh, as it affects surface fatigue (namely, pitting and wear) along with gear mesh losses. A lot of attention has been targeted to the determination of the maximum contact stress between gear teeth in mesh, resulting in many "different" formulas. Moreover, each of those formulas is applicable to a particular class of gears (e.g., hypoid, worm, spiroid, spiral bevel, or cylindrical - spur and helical). More recently, FEM (the finite element method) has been introduced to evaluate the contact stress between gear teeth. Presented below is a single methodology for evaluating the maximum contact stress that exists between gear teeth in mesh. The approach is independent of the gear tooth geometry (involute or cycloid) and valid for any gear type (i.e., hypoid, worm, spiroid, bevel and cylindrical).
Traditionally, profile and lead inspections have been indispensable portions of a standard inspection of an involute gear. This also holds true for the worm of a worm gear drive (Ref. 1). But the inspection of the profile and the lead is rarely performed on a worm wheel. One of the main reasons is our inability to make good definitions of these two elements (profile and lead) for the worm wheel. Several researchers have proposed methods for profile and lead inspections of a worm wheel using CNC machines or regular involute and lead inspections of a worm wheel using CNC machines or regular involute measuring machines. Hu and Pennell measured a worm wheel's profile in an "involute" section and the lead on the "pitch" cylinder (Ref. 2). This method is applicable to a convolute helicoid worm drive with a crossing angle of 90 degrees because the wheel profile in one of the offset axial planes is rectilinear. This straight profile generates an involute on the generated worm wheel. Unfortunately, because of the hob oversize, the crossing angle between the hob and the worm wheel always deviates from 90 degrees by the swivel angle. Thus, this method can be implemented only approximately by ignoring the swivel angle. Another shortcoming of this method is that there is only one profile and one lead on each flank. If the scanned points deviated from this curve, it produced unreal profile deviation. Octrue discussed profile inspection using a profile checking machine (Ref. 3).