Free form milling of gears becomes more and more important as a flexible machining process for gears. Reasons for that are high degrees of freedom as the usage of universal tool geometry and machine tools is possible. This allows flexible machining of various gear types and sizes with one manufacturing system. This paper deals with manufacturing, quality and performance of gears made by free form milling. The focus is set on specific process properties of the parts. The potential of free form milling is investigated in cutting tests of a common standard gear. The component properties are analyzed and flank load-carrying capacity of the gears is derived by running trials on back-to-back test benches. Hereby the characteristics of gears made by free form milling and capability in comparison with conventionally manufactured gears will be shown.
Exciting new machine, cutting tool and software technologies are compelling
many manufacturers to take a fresh look at producing their larger gears on machining centers. They're faster than ever, more flexible, easy to operate, highly affordable - and for any type of gear.
What is the best tooling to use when hard milling a gear tooth on a 5-axis machining center? And what makes it the best? We have just bought a DMG Mori mono-block and are not getting the finishes at the cycle times we require.
The "less is more" mantra is certainly
a rallying cry in manufacturing.
Technologies like multiaxis machining, 3D printing and automation are enabling
companies to be more efficient, cost-conscious and flexible on the shop floor.
This paper proposes a method for the manufacture of a replacement pinion for an existing, large-sized skew bevel gear using multi-axis control and multitasking machine tool.
In this article, the authors calculated the numerical coordinates on the tooth surfaces of spiral bevel gears and then modeled the tooth profiles using a 3-D CAD system. They then manufactured the
large-sized spiral bevel gears based on a CAM process using multi-axis control and multi-tasking machine tooling. The
real tooth surfaces were measured using a coordinate measuring machine and the tooth flank form errors were detected
using the measured coordinates. Moreover, the gears were meshed with each other and the tooth contact patterns were investigated. As a result, the validity of this manufacturing method was confirmed.
Imagine the flexibility of having one
machine capable of milling, turning,
tapping and gear cutting with deburring
included for hard and soft material. No, you’re not in gear fantasy land. The technology to manufacture gears on non gear-dedicated, mult-axis machines has existed for a few years in Europe, but has not yet ventured into mainstream manufacturing. Deckel Maho Pfronten, a member of the Gildemeister Group, took the sales plunge this year, making the technology available on most of its 2009 machines.