Accurate prediction of gear dynamic factors (also known as Kv factors) is necessary to be able to predict the fatigue life of gears. Standards-based calculations of gear dynamic factors have some
limitations. In this paper we use a multibody dynamic model, with all 6 degrees of freedom (DOF) of a high-speed gearbox to calculate gear dynamic factors. The findings from this paper will help engineers to understand numerous factors that influence the prediction of dynamic factors and will help them to
design more reliable gears.
A high number of wind turbine gearboxes do not meet their expected design life, despite meeting the design criteria of current bearing, gear and wind turbine industry standards and certifications.
Romax Technology, the gearbox, bearing
and driveline engineering specialist, has launched a new design software package that will increase speed, quality, creativity and innovation when designing gearboxes and drivelines. Called Concept, the new product delivers on the Romax vision of streamlining the end-to-end, planning-to-manufacture process with open, easy to use software solutions. It has been developed in close collaboration with engineers in the largest ground vehicle, wind energy and industrial
equipment companies around the globe.