This paper presents an approach that provides optimization of both gearbox kinematic arrangement and gear tooth geometry to achieve a high-density gear transmission. It introduces dimensionless gearbox volume functions that can be minimized by the internal gear ratio optimization. Different gearbox arrangements are analyzed to define a minimum of the volume functions. Application of asymmetric gear tooth profiles for power density
maximization is also considered.
Jules Kish responds to comments about his article on finding a hunting ratio, and Dr. Sante Basili argues that shaving is still the best way to finish a rough-cut gear.
This article presents an efficient and direct method for the synthesis of compound planetary differential gear trains for the generation of specified multiple speed ratios. It is a train-value method that utilizes the train values of the integrated train components of the systems to form design equations which are solved for the tooth numbers of the gears, the number of mating gear sets and the number of external contacts in the system. Application examples, including vehicle differential transmission units, rear-end differentials with unit and fractional speed ratios, multi-input functions generators and robot wrist joints are given.
Sub: 'Finding Tooth Ratios' article published in Nov/Dec 1985 issue
Let us congratulate you and Orthwein, W.C. for publishing this superb article in Gear Technology Journal. We liked the article very much and wish to impliment it in our regular practice.
When designing gears, the engineer is often faced with the problem of selecting the number of teeth in each gear, so that
the gear train will provide a given speed ratio
Selection of the number of teeth for each gear in a gear train such that the output to input angular velocity ratio is a specified value is a problem considered by relatively few published works on gear design.