This study deals with the modeling and consideration of misalignments in planetary gearboxes in the optimization and design process. Procedures for taking into account misalignments in cylindrical gearboxes are standardized and established in industry. Misalignments of central elements like carrier, sun gear or ring gear in planetary gearboxes, cause varying contact positions and variable loads, depending on the angular position of the central elements. This load, which is variable over the circumference, is not taken into account in the standardized procedures, despite its effects on the loads on the gears.
In the wind power industry, the reliability of powertrain components plays a major role. Especially in multi-megawatt offshore applications, an unplanned replacement of drivetrain
components can lead to extremely high costs. Hence, the expectation of wind farm operators is to forecast the system reliability. Under the leadership of the VDMA (Mechanical Engineering Industry Association), the standardization paper 23904 "Reliability Assessment for Wind Turbines" was published in October 2019.
It has been documented that epicyclic gear stages provide high load capacity and compactness to gear drives. This paper will focus on analysis and design of epicyclic gear arrangements that provide extremely high gear ratios. Indeed, a special, two-stage planetary arrangement may utilize a gear ratio of over one hundred thousand to one. This paper presents an analysis of such uncommon gear drive arrangements and defines their major parameters, limitations, and gear ratio maximization approaches. It also demonstrates numerical examples, existing designs, and potential applications.
With all the advantages of building float into a planetary gear system, what advantages are there to using a carrier in the first place, rather than simply having your planets float in the system?
Light-weight construction and consideration of available resources result in gearbox designs with high load capacity and power density. At the same time, expectations for gear reliability are high. Additionally, there is a diversity of planetary gears for different applications.
There is a great need for future powertrains in automotive and industrial applications to improve upon their efficiency and power density while reducing their dynamic vibration and noise initiation. It is accepted that planetary gear transmissions have several advantages in comparison to conventional transmissions, such as a high power density due to the power division using several planet gears. This paper presents planetary gear transmissions, optimized in terms of
efficiency, weight and volume.
In epicyclic gear sets designed for aeronautical applications, planet gears are generally supported by spherical roller bearings with the bearing outer race integral to the gear hub. This article presents a new method to compute roller load distribution in such bearings where the outer ring can’t be considered rigid.
Planetary gear transmissions are compact, high-power speed reducers that use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single-plane transmission, the planet gear has no size of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary transmission with a fixed size, gear ratio, input speed, power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives, which point to an optimal planetary reduction ratio in the neighborhood of four to five.
This article discusses the relationships among the fillet stress on a thin rim planet gear, the radial clearance between the gear rim and the gear shaft, the tooth load, the rim thickness, the radius of curvature of the center line of the rim, the face width and the module.