Nowadays, the progress in polymer materials and injection molding processing has enabled a drastic expansion of plastic gear applications. They are used not only for lightly loaded motion transmissions, but also in moderately loaded power drives in automotive, agriculture, medical, robotics, and many other industries.
The wear behavior of polymer gears made of five different materials has been investigated using an existing polymer gear test rig. Step loading tests at a constant speed of 1,000 rpm were performed. Significant differences in failure modes and performance have been observed for the five polymer gear materials for gear engagements of gears, with the same material as each other.
This paper presents an original method for computing the loaded mechanical behavior of fiber reinforced polymer gears. Although thermoplastic gears are unsuitable for application transmitting
high torque, adding fibers can significantly increase their performance. The particular case of
polyamide 6 + 30% glass fibers is studied in this paper.