This work establishes a baseline for aerospace spur gear behavior under oil-off conditions. The collected test results document a different oil-off time, dictated by material used.
Over the past few months we've talked with a lot of gear manufacturers. Many of them tell us business is strong, while others are struggling with reduced demand. The difference between them isn't so much in the quality of their manufacturing operations, but rather trends in the end markets they serve.
Gears with an asymmetric involute gear tooth form were analyzed to determine their bending and contact stresses
relative to symmetric involute gear tooth designs, which are representative of helicopter main-drive gears.
The objective of this paper is to demonstrate that transmission gears
of rotary-wing aircraft, which are typically scrapped due to minor foreign
object damage (FOD) and grey staining, can be repaired and re-used with
signifi cant cost avoidance. The isotropic superfinishing (ISF) process is used to repair the gear by removing surface damage. It has been demonstrated
in this project that this surface damage can be removed while maintaining
OEM specifications on gear size, geometry and metallurgy. Further, scrap
CH-46 mix box spur pinions, repaired by the ISF process, were subjected to
gear tooth strength and durability testing, and their performance compared
with or exceeded that of new spur pinions procured from an approved
Navy vendor. This clearly demonstrates the feasibility of the repair and
re-use of precision transmission gears.
When gears are case-hardened, it is known that some growth and redistribution of stresses that result in geometric distortion will occur. Aerospace gears require post case-hardening grinding of the gear teeth to achieve necessary accuracy. Tempering of the case-hardened surface, commonly known as grinding burn, occurs in the manufacturing
process when control of the heat generation at the surface is lost.
Carbon steels have primarily been used to manufacture aerospace gears due to the steels' mechanical characteristics. An alloyed low carbon steel is easily case-hardened to obtain a hard wear surface while maintaining the ductile core characteristics. The microstructure achieved will accept the heavy loading, shocks, and elevated temperatures that gears typically experience in applications. The carbon steel machinability allows for general machining practices to be employed when producing aerospace gears versus the more advanced metal removal processes required by stainless and nickel-based alloys.
A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.
A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gear box. Reduction of this noise is a NASA and U.S. Army goal.