When a gearbox remanufacturer is trying to decide whether to regrind or replace a gear, any number of factors could be running through their head. Here are some remanufacturers' processes on how they reach the conclusions they do, and why you should listen to them.
This paper presents a new approach to repair industrial gears by showing a case study where pressure angle modification is also considered, differently from the past repairing procedures that dealt only with the modification of the profile shift
coefficient. A computer program has been developed to automatically determine the repair alternatives under two goals: minimize the stock removal or maximize gear tooth strength.
Following is a report on the R&D findings regarding remediation of high-value, high-demand spiral bevel gears for the UH–60 helicopter tail rotor drivetrain. As spiral bevel gears for the UH–60 helicopter are in generally High-Demand due to the needs of new aircraft production and the overhaul and repair of aircraft returning from service, acquisition of new spiral bevel gears in support
of R&D activities is very challenging. To compensate, an assessment was done of a then-emerging superfinishing method—i.e., the micromachining process (MPP)—as a potential repair technique for spiral bevel gears, as well as a way to enhance their performance and durability. The results are described in this paper.
The objective of this paper is to demonstrate that transmission gears
of rotary-wing aircraft, which are typically scrapped due to minor foreign
object damage (FOD) and grey staining, can be repaired and re-used with
signifi cant cost avoidance. The isotropic superfinishing (ISF) process is used to repair the gear by removing surface damage. It has been demonstrated
in this project that this surface damage can be removed while maintaining
OEM specifications on gear size, geometry and metallurgy. Further, scrap
CH-46 mix box spur pinions, repaired by the ISF process, were subjected to
gear tooth strength and durability testing, and their performance compared
with or exceeded that of new spur pinions procured from an approved
Navy vendor. This clearly demonstrates the feasibility of the repair and
re-use of precision transmission gears.