Recently, a new type of hob with carbide inserts has been introduced, providing higher cutting speeds, longer tool life and higher feed rates when compared to re-grindable, high-speed steel hobs. But with this kind of hob, new challenges occur due to positional errors of the cutting edges when mounted on the tool. These errors lead to manufacturing errors on the gear teeth which must be controlled. In this paper, the tooth quality of a gear manufactured by hobs with different quality classes is analyzed using a simulation model in combination with Monte Carlo methods.
Decades ago, technology shifted from HSS to indexable inserts in turning and milling. This movement wasn't immediately realized in gear hobbing because coated PM-HSS hobs and complex gear profiles remained highly effective and productive methods. Only fairly recently have gear manufacturers started to take a serious look at indexable technology to cut gear teeth.
Indexable carbide insert (ICI) cutting
tools continue to play a pivotal role
in gear manufacturing. By offering higher cutting speeds, reduced cycle times, enhanced coatings, custom configurations and a diverse range of sizes and capabilities, ICI tools have
proven invaluable for finishing and pre-grind applications. They continue to expand their unique capabilities and worth in the cutting tool market.