The research presented in this paper extends the work done on CAD-based simulation approaches with an investigation of the surface topography of gears produced through gear skiving and the investigation of the cutting tool characteristics on the geometry of the produced gear. The study is complemented with the investigation of the cutting forces required in the machining process.
Information is the name of the game in the 90s. We need more of it; we need it faster; and we need it in infinitely manipulatable and user-friendly form. In many cases, getting it that way is still something of a Holy Grail, somewhere off on the distant horizon. But thanks to computer technology, bit by byte, we're getting there.
Gear design has long been a "black art." The gear shop's modern alchemists often have to solve problems with a combination of knowledge, experience and luck. In many cases, trial and error are the only effective way to design gears. While years of experience have produced standard gearsets that work well for most situations, today's requirements for quieter, more accurate and more durable gears often force manufacturers to look for alternative designs.
Many CAD (Computer Aided Design) systems have been developed and implemented to produce a superior quality design and to increase the design productivity in the gear industry. In general, it is true that a major portion of design tasks can be performed by CAD systems currently available. However, they can only address the computational aspects of gear design that typically require decision-making as well. In most industrial gear design practices, the initial design is the critical task that significantly effects the final results. However, the decisions about estimating or changing gear size parameters must be made by a gear design expert.
This article discusses an application driven approach to the computer-aided sizing of spur gear teeth. The methodology is bases on the index of tooth loading and environment of application of the gear. It employs handbook knowledge and empirical information to facilitate the design process for a novice. Results show that the approach is in agreement with the textbook data. However, this technique requires less expert knowledge to arrive at the conclusion. The methodology has been successfully implemented as a gear tooth sizing module of a parallel axis gear drive expert system.
Computer programs have been developed to completely design spur and helical gear shaper cutters starting from the specifications of the gear to be cut and the type of gear shaper to be used. The programs generate the working drawing of the cutter and, through the use of a precision plotter, generate enlarge scaled layouts of the gear as produced by the cutter and any other layouts needed for its manufacture.
Material losses and long production times are two areas of conventional spur and helical gear manufacturing in which improvements can be made. Metalforming processes have been considered for manufacturing spur and helical gears, but these are costly due to the development times necessary for each new part design. Through a project funded by the U.S. Army Tank - Automotive Command, Battelle's Columbus
Division has developed a technique for designing spur and helical gear forging and extrusion dies using computer aided
techniques.