The research presented in this paper extends the work done on CAD-based simulation approaches with an investigation of the surface topography of gears produced through gear skiving and the investigation of the cutting tool characteristics on the geometry of the produced gear. The study is complemented with the investigation of the cutting forces required in the machining process.
In order to reduce costs for development and production, the objective in gearbox development and design is to predict running and noise behavior of a gearbox without manufacturing a prototype and running expensive experimental investigations. To achieve this objective, powerful simulation models have to be set up in a first step. Afterwards, those models have to be qualified and compared to experimental investigations. During the investigation procedure of gearboxes, there are two possibilities to evaluate the running and noise behavior: quasi-static and dynamic investigations. In times of engine downsizing, e-mobility and lightweight design, the dynamic excitation behavior is becoming increasingly important.
The aim of the study was to apply such a specialized tooth contact analysis method, well-used within the steel gear community, to a polymer gear application to assess what modifications need be made to these models for them to be applicable to polymer gears.
The usage of modern thrusters allows combining the functions of the drive and the ship rudder in one unit, which are separated in conventional ship propulsion systems. The horizontally oriented propeller is supported in a vertically rotatable nacelle that is mounted underneath the ship's hull. The propeller can directly or indirectly be driven by an electric motor or combustion engine. Direct drive requires the installation of a low-speed electric motor in the nacelle. This present paper concentrates on indirect drives where the driving torque is transferred by bevel gear stages and shafts from the motor to the propeller.
With the ongoing push towards electric vehicles (EVs), there is likely to be increasing focus on the noise impact of the gearing required for the transmission of power from the (high-speed) electric motor to the road. Understanding automotive noise,
vibration and harshness (NVH) and methodologies for total in-vehicle noise presupposes relatively large, internal combustion (IC) contributions, compared to gear noise. Further, it may be advantageous to run the electric motors at significantly higher rotational speed than conventional automotive IC engines, sending geartrains into yet higher speed ranges. Thus the move to EV or hybrid electric vehicles (HEVs) places greater or different demands on geartrain noise. This work combines both a traditional NVH approach (in-vehicle and rig noise, waterfall plots, Campbell diagrams and Fourier analysis) - with highly detailed transmission error measurement and simulation of the complete drivetrain - to fully understand noise sources
within an EV hub drive. A detailed methodology is presented, combining both a full series of tests and advanced simulation to troubleshoot and optimize an EV hub drive for noise reduction.
A computational fluid dynamics (CFD) method is adapted, validated and applied to spinning gear systems with emphasis on predicting windage losses.
Several spur gears and a disc are studied. The CFD simulations return good agreement with measured windage power loss.