Given the lack of information on thermal distortion effects in small size steel gears, an experimental study of quasi-static transmission error behavior under thermomechanical conditions is presented.
The authors use data analysis to determine which tolerances have the greatest effect on transmission error, enabling them to make adjustments and reduce production costs.
Gear noise is among the issues of greatest concern in today's modern gearboxes. Significant research has resulted in the application of enhancements in all phases of gear manufacturing, and the work is ongoing. With the introduction of Electric
Vehicles (EV), research and development in this area has surged in recent years. Most importantly, powerful new noise analysis solutions are fast becoming available.
Question: I am a gear engineer for a motor manufacturer in China. I am writing about noise generated from cross-helical gear assembly error. I want to learn the relationship between the misalignment (center distance change and cross-angle shift) and transmission error. It is better under the loading and theory conditions. What is the trend of cross-helical gear development (use ZI worm and involute helical gear, point contact)?
This article presents an analysis of asymmetric tooth gears considering the effective contact ratio that is also affected by bending and contact tooth deflections. The goal is to find an optimal solution for high performance gear drives, which would combine high load capacity and efficiency, as well as low transmission error (which affects gear noise and vibration).
In the design process of transmissions, one major criterion is the
resulting noise emission of the powertrain due to gear excitation.
Within the past years, much investigation has shown that the
noise emission can be attributed to quasi-static transmission error.
Therefore, the transmission error can be used for a tooth contact
analysis in the design process, as well as a characteristic value for
quality assurance by experimental inspections.
Gear-loaded tooth contact analysis is an important tool for the design and analysis of gear performance within transmission and driveline systems. Methods for the calculation of tooth contact conditions have been discussed in the literature for many years. It's possible the method you've been using is underestimating transmission error in helical gears. Here's why.
The connection between transmission error, noise and vibration during operation has long been established.
Calculation methods have been developed to describe the influence so that it is possible to evaluate the relative effect
of applying a specific modification at the design stage. These calculations enable the designer to minimize the excitation from the gear pair engagement at a specific load. This paper explains the theory behind transmission error and the reasoning behind the method of applying the modifications through mapping surface profiles and determining load sharing.
Minimizing gear losses caused by churning, windage and mesh friction is important if plant operating costs and
environmental impact are to be minimized. This paper concentrates on mesh friction losses and associated scuffing risk. It describes the preliminary results from using a validated, 3-D Finite Element Analysis (FEA) and Tooth Contact Analysis (TCA) program to optimize cylindrical gears for low friction losses without compromising transmission error (TE), noise and power density. Some case studies and generic procedures for minimizing losses are presented. Future
development and further validation work is discussed.