Gleason's special online event from April 26-28, 2022 is all about design, manufacturing and inspection of e-drive gears. KISSsoft will look at several aspects of gear design in an EV system environment.
Excessive machine tool vibration during a precision grinding operation can result in poor workpiece quality in the form of chatter, rough finishes, burn, etc. One possible reason for
excessive vibration is directly associated with the relationship
between natural frequencies of a machine tool system and the
operating speed of the grinding wheel spindle.
With the aim of reducing the operating noise and vibration of planetary gear sets used in automatic transmissions, a meshing phase difference was applied to the planet gears that mesh with the sun and ring gears.
Helical gear pairs with narrow face width can be theoretically classified into three categories over the contact ration domain whose abscissa is the transverse contact ration and whose ordinate is the overlap contact ratio. There is a direct relation between vibration magnitude and shaft parallelism deviation. To clarify the effect of the tooth deviation types on the vibration behavior of helical gear pairs, performance diagrams on vibration are introduced. the acceleration levels of gear pairs are shown by contour lines on the contact ratio domain. Finally, the performance of gears with bias-in and bias-out modifications is discussed considering the effect of the shaft parallelism deviation with use of the developed simulator on a helical gear unit. It becomes clear that there is an asymmetrical feature on the relation between the vibration magnitude of a gear pair and the direction of each deviation.
As a result of extensive research into the vibration characteristics of gear drives, a systematic approach has evolved, by which damaging resonances can be eliminated. The method combines
finite element techniques with experimental signature and modal
analyses. Implementation of the bulk of the method can be carried out early in the design stage. A step-by-step description of the approach, as it was applied to an existing accessory drive, is given in the text. It is shown how
premature bearing failures were eliminated by detuning the torsional
oscillations of a gearshaft. A dramatic reduction in vibration levels was achieved as a result of detuning the problem gear. The proposed approach can be extended to other types of rotating machines.