The AGMA Technical Division informs of the publication of new documents by ISO Central: ISO 10300-1:2023, Calculation of load capacity of bevel gears — Part 1: Introduction and general influence factors; ISO 10300-2:2023, Calculation of load capacity of bevel gears — Part 2: Calculation of surface durability (macropitting); ISO 10300-3:2023, Calculation of load capacity of bevel gears — Part 3: Calculation of tooth root strength.
In today’s globalized manufacturing, all industrial products having dimensional constraints must undergo conformity specifications assessments on a regular basis. Consequently, (standardization) associated with GD&T (geometrical dimensioning and tolerancing) should be un-ambiguous and based on common, accepted rules. Of course gears - and their mechanical assemblies - are special items, widely present in industrial applications where
energy conversion and power transmission are involved.
The gear companies enjoying the most success in today’s global market are those that firmly believe quality is much more than expert craftsmanship and foolproof inspection methodologies.
“The gear marketplace is a global marketplace.” Bill Bradley says it easily, with no special emphasis. The vice president of AGMA’s technical division sees the statement as an obvious fact.
As the international business community grows closer together, the
need for understanding differences between national and international
gear rating standards becomes increasingly important for U.S. gear
manufacturers competing in the world market.
This is the third article in a series exploring the new ISO 6336 gear rating standard and its methods of calculation. The opinions expressed herein are htose of the author as an individual. They do not represent the opinions of any organization of which he is a member.
One of the best ways to learn the ISO 6336 gear rating system is to recalculate the capacity of a few existing designs and to compare the ISO 6336 calculated capacity to your experience with those designs and to other rating methods. For these articles, I'll assume that you have a copy of ISO 6336, you have chosen a design for which you have manufacturing drawings and an existing gear capacity calculation according to AGMA 2001 or another method. I'll also assume that you have converted dimensions, loads, etc. into the SI system of measurement.
The American Gear Manufacturers Association (AGMA) is accredited by the American National Standards Institute (ANSI) to write all U.S. standards on gearing. However, in response to the growing interest in a global marketplace, AGMA became involved with the International Standards Organization (ISO) several years ago, first as an observer in the late 1970s and then as a participant, starting in the early 1980s. In 1993, AGMA became Secretariat (or administrator) for Technical Committee 60 of ISO, which administers ISO gear standards development.
Standards are unlike gears themselves: mundane, but complex, ubiquitous and absolutely vital. Standards are a lingua franca, providing a common language with reference points for evaluating product reliability and performance for manufacturers and users. The standards development process provides a scientific forum for discussion of product design, materials and applications, which can lead to product improvement. Standards can also be a powerful marketing tool for either penetrating new markets or protecting established ones.