The grinding/abrasives market is rapidly changing, thanks to new technology, more flexibility and an attempt to lower customer costs. Productivity is at an all-time high in this market, and it’s only going to improve with further R&D. By the time IMTS 2014 rolls around this September, the gear market will have lots of new toys and gadgets to offer potential customers. If you haven’t upgraded any grinding/abrasives equipment in the last five years, now might be a good time to consider the investment.
Whether you spent time at Gear Expo in Indianapolis or EMO in Hannover, there was certainly new technology
attracting attention. Machine tools are faster, more efficient and can integrate numerous functions in a single setup. Grinding technology is turning science upside down and inside out with high-speed removal rates and increased throughput.
This machine concept facilitates highly
productive profile grinding for large workpieces. The range for external and internal gears comprises models for manufacturing workpieces up to 2,000 millimeters – for industrial gear units, wind power, and marine propulsion applications
Machine tool companies are expanding capabilities to better accommodate the changing face of manufacturing. Customers want smaller-sized equipment to take up less valuable floor space, multifunctional machines that can handle a variety of operations and easy set-up changes that offer simplified operation and maintenance.
Modern gearboxes are characterized by high torque load demands, low running noise and compact design. In order
to fulfill these demands, profile and lead modifications are being applied more often than in the past. This paper will focus on how to produce profile and lead modifications by using the two most common grinding processes—threaded
wheel and profile grinding. In addition, more difficult modifications—such as defined flank twist or topological flank corrections—will also be described in this paper.
Gear grinding is one of the most expensive and least understood aspects of gear manufacturing. But with pressures for reduced noise, higher quality and greater efficiency, gear grinding appears to be on the rise.
In the quest for ever more exacting and compact commercial gears, precision abrasives are playing a key production role - a role that can shorten cycle time, reduce machining costs and meet growing market demand for such requirements as light weights, high loads, high speed and quiet operation. Used in conjunction with high-quality grinding machines, abrasives can deliver a level of accuracy unmatched by other manufacturing techniques, cost-effectively meeting AGMA gear quality levels in the 12 to 15 range. Thanks to advances in grinding and abrasive technology, machining has become one of the most viable means to grind fast, strong and quiet gears.
Grinding is a technique of finish-machining, utilizing an abrasive wheel. The rotating abrasive wheel, which id generally of special shape or form, when made to bear against a cylindrical shaped workpiece, under a set of specific geometrical relationships, will produce a precision spur or helical gear. In most instances the workpiece will already have gear teeth cut on it by a primary process, such as hobbing or shaping. There are essentially two techniques for grinding gears: form and generation. The basic principles of these techniques, with their advantages and disadvantages, are presented in this section.