In many gear transmissions, tooth load on one flank is significantly higher and is applied for longer periods of time than on the opposite one; an asymmetric tooth shape should reflect this functional difference. The advantages of these gears allow us to improve the performance of the primary drive tooth flanks at the expense of the opposite coast flanks, which are unloaded or lightly loaded during a relatively short work period by drive flank contact and bending stress reduction. This article is about the microgeometry optimization of the spur asymmetric gears’ tooth flank profile based on the tooth bending and contact deflections.
This article presents an analysis of asymmetric tooth gears considering the effective contact ratio that is also affected by bending and contact tooth deflections. The goal is to find an optimal solution for high performance gear drives, which would combine high load capacity and efficiency, as well as low transmission error (which affects gear noise and vibration).
When compared with the traditional gear design approach - based on pre-selected, typically standard generating rack parameters - the alternative Direct Gear Design method provides certain advantages for custom, high-performance gear drives.
In many gear transmissions, a tooth load on one flank is significantly higher and is applied for longer periods of time than for the opposite one; an asymmetric tooth shape reflects
this functional difference. This paper describes an approach that rationalizes the degree of asymmetry (or asymmetry factor K) selection to meet a variety of operating conditions and requirements for custom gear drives.
This paper presents an approach that provides optimization of both gearbox kinematic arrangement and gear tooth geometry to achieve a high-density gear transmission. It introduces dimensionless gearbox volume functions that can be minimized by the internal gear ratio optimization. Different gearbox arrangements are analyzed to define a minimum of the volume functions. Application of asymmetric gear tooth profiles for power density
maximization is also considered.
Gears with an asymmetric involute gear tooth form were analyzed to determine their bending and contact stresses
relative to symmetric involute gear tooth designs, which are representative of helicopter main-drive gears.
In comparison with the traditional gear design approach based on preselected, typically standard generating rack
parameters, the Direct Gear Design method provides certain advantages for custom high-performance gear drives that
include: increased load capacity, efficiency and lifetime; reduced size, weight, noise, vibrations, cost, etc. However, manufacturing such directly designed gears requires not only custom tooling, but also customization of the gear measurement methodology. This paper presents definitions of main inspection dimensions and parameters for directly designed spur and helical,
external and internal gears with symmetric and asymmetric teeth.
This paper presents a unique approach and methodology to define the limits of selection for gear parameters. The
area within those limits is called the “area of existence of involute gears” (Ref. 1). This paper presents the definition and construction of areas of existence of both external and internal gears. The isograms of the constant operating pressure
angles, contact ratios and the maximum mesh efficiency (minimum sliding) isograms, as well as the interference
isograms and other parameters are defined. An area of existence allows the location of gear pairs with certain characteristics. Its practical purpose is to define the gear pair parameters that satisfy specific performance requirements before
detailed design and calculations. An area of existence of gears with asymmetric teeth is also considered.
The present article contains a preliminary description of studies carried out by the authors with a view toward developing asymmetrical gear teeth. Then a comparison between numerous symmetrical and asymmetrical tooth stress fields under the same modular conditions follows. This leads to the formulation of a rule for similar modules governing variations of stress fields, depending on the pressure angle of the nonactive side. Finally a procedure allowing for calculations for percentage reductions of asymmetrical tooth modules with respect to corresponding symmetrical teeth, maximum ideal stress being equal, is proposed. Then the consequent reductions in size and weight of asymmetrical teeth are assessed.
This article illustrates a structural analysis of asymmetrical teeth. This study was carried out because of the impossibility of applying traditional calculations to procedures involved in the specific case. In particular, software for the automatic generation of meshes was devised because existing software does not produce results suitable for the new geometrical model required. Having carried out the structural calculations, a comparative study of the stress fields of symmetrical and asymmetrical teeth was carried out. The structural advantages of the latter type of teeth emerged.