This paper presents a comparison of the linear and nonlinear approaches for damage accumulation of tooth root breakage damage of gears. In the beginning, the theoretical fundamentals of damage accumulation are presented compactly. To compare the suitability of the methods an extensive set of experimental data is presented at first. The data is evaluated with both the linear and the nonlinear approach and the results are compared. For the linear approach, the method according to Miner and Palmgren is applied. For the nonlinear approach, the method developed by Subramanyan is used. The objective of this evaluation is to assess if the more complex method yields a potential benefit for a more accurate service life prediction of gears.
Accurate prediction of gear dynamic factors (also known as Kv factors) is necessary to be able to predict the fatigue life of gears. Standards-based calculations of gear dynamic factors have some
limitations. In this paper we use a multibody dynamic model, with all 6 degrees of freedom (DOF) of a high-speed gearbox to calculate gear dynamic factors. The findings from this paper will help engineers to understand numerous factors that influence the prediction of dynamic factors and will help them to
design more reliable gears.
As is well known in involute gearing, “perfect” involute gears never work perfectly in the real world.
Flank modifications are often made to overcome the influences of errors coming from manufacturing and assembly processes as well as deflections of the system. The same discipline applies to hypoid gears.
Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9210 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temperature of 320 K (116 degree F), an outlet oil temperature of 350 K (170 degree F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.
One of the major problems of plastic gear design is the knowledge of their running temperature. Of special interest is the bulk temperature of the tooth to predict the fatigue life, and the peak temperature on the surface of the tooth to avert surface failure. This paper presents the results of an experimental method that uses an infrared radiometer to measure the temperature variation along the profile of a plastic gear tooth in operation.
Measurements are made on 5.08, 3.17, 2.54, 2.12 mm module hob cut gears made from nylon 6-6, acetal and UHMWPE (Ultra High Molecular Weight Polyethylene). All the tests are made on a four square testing rig with thermoplastic/steel gear pairs where the
plastic gear is the driver. Maximum temperature prediction curves obtained through statistical analysis of the results are presented and compared to data available from literature.