In this article, the authors calculated the numerical coordinates on the tooth surfaces of spiral bevel gears and then modeled the tooth profiles using a 3-D CAD system. They then manufactured the
large-sized spiral bevel gears based on a CAM process using multi-axis control and multi-tasking machine tooling. The
real tooth surfaces were measured using a coordinate measuring machine and the tooth flank form errors were detected
using the measured coordinates. Moreover, the gears were meshed with each other and the tooth contact patterns were investigated. As a result, the validity of this manufacturing method was confirmed.
There are different types of spiral bevel gears, based on the methods of generation of gear-tooth surfaces. A few notable ones are the Gleason's gearing, the Klingelnberg's Palloid System, and the Klingelnberg's and Oerlikon's Cyclo Palliod System. The design of each type of spiral bevel gear depends on the method of generation used. It is based on specified and detailed directions which have been worked out by the mentioned companies. However, there are some general aspects, such as the concepts of pitch cones, generating gear, and conditions of force transmissions that are common for all types of spiral bevel gears.