In the last section, we discussed gear inspection; the types of errors found by single and double flank composite and analytical tests; involute geometry; the involute cam and the causes and symptoms of profile errors. In this section, we go into tooth alignment and line of contact issues including lead, helix angles, pitch, pitchline runout, testing and errors in pitch and alignment.
It is very common for those working in the gear manufacturing industry to have only a limited understanding of the fundamental principals of involute helicoid gear metrology, the tendency being to leave the topic to specialists in the gear lab. It is well known that quiet, reliable gears can only be made using the information gleaned from proper gear metrology.
A programmable algorithm is developed to separate out the effect of eccentricity (radial runout) from elemental gear inspection date, namely, profile and lead data. This algorithm can be coded in gear inspection software to detect the existence, the magnitude and the orientation of the eccentricity without making a separate runout check. A real example shows this algorithm produces good results.
Helical gears can drive either nonparallel or parallel shafts. When these gears are used with nonparallel shafts, the contact is a point, and the design and manufacturing requirements are less critical than for gears driving parallel
shafts.