Measurement institutions of seven different countries — China, Germany, Japan, Thailand, Ukraine, United Kingdom and the U.S. — participated in the implementation of the first international comparison of involute gear measurement standards. The German metrology institute Physikalisch-Technische Bundesanstalt (PTB) was chosen as the pilot laboratory as well as the organizer. Three typical involute gear measurement standards provided by the PTB were deployed for this comparison: a profile, a helix and a pitch measurement standard. In the final analysis, of the results obtained from all participants, the weighted mean was evaluated as reference value for all 28 measured parameters. However, besides the measurement standards, the measured parameters, and, most importantly, some of the comparison results from all participants are anonymously presented. Furthermore, mishandling of the measurement standards as occurred during the comparison will be illustrated.
In the last section, we discussed gear inspection; the types of errors found by single and double flank composite and analytical tests; involute geometry; the involute cam and the causes and symptoms of profile errors. In this section, we go into tooth alignment and line of contact issues including lead, helix angles, pitch, pitchline runout, testing and errors in pitch and alignment.
It is very common for those working in the gear manufacturing industry to have only a limited understanding of the fundamental principals of involute helicoid gear metrology, the tendency being to leave the topic to specialists in the gear lab. It is well known that quiet, reliable gears can only be made using the information gleaned from proper gear metrology.
Helical gears can drive either nonparallel or parallel shafts. When these gears are used with nonparallel shafts, the contact is a point, and the design and manufacturing requirements are less critical than for gears driving parallel
shafts.