Environmentally friendly, highly efficient and lasting a product's lifetime. With characteristics like this, Pulsed-Plasma Diffusion (PPD) technology from Oerlikon Balzers has established itself as an industry standard for the treatment of large automotive press tooling. Now the technology specialists are targeting new applications with this advanced process, offering an alternative to traditional hard-chrome processes.
The process of nitriding has been used to case harden gears for years, but the science and technology of the process have not remained stagnant. New approaches have been developed which are definitely of interest to the gear designer. These include both new materials and new processing techniques.
When it comes to setting the standard for gear making, the auto industry often sets the pace. Thus when automakers went to grinding after hardening to assure precision, so did the machine shops that specialize in gearing. But in custom manufacturing of gears in small piece counts, post-heat treat grinding can grind away profits too.
In this article we will characterize the nitride layers that are generated by different nitriding processes and compare their respective wear characteristics.
In a very general sense, increasing the hardness of a steel gear increases the strength of the gear. However, for each process there is a limit to its effectiveness. This article contains background information on each of the processes covered. In each section what is desired and what is achievable is discussed. Typical processes are presented along with comments on variables which affect the result. By reviewing the capabilities and processes, it is possible to determine the limits to each process.
Carburized and hardened gears have optimum load-carrying capability. There are many alternative ways to produce a hard case on the gear surface. Also, selective direct hardening has some advantages in its ability to be used in the production line, and it is claimed that performance results equivalent to a carburized gear can be obtained. This article examines the alternative ways of carburizing, nitriding, and selective direct hardening, considering equipment, comparative costs, and other factors. The objective must be to obtain the desired quality at the lowest cost.
The manufacturing process to produce a gear essentially consist of: material selection, blank preshaping, tooth shaping, heat treatment, and final shaping. Only by carefully integrating of the various operations into a complete manufacturing system can an optimum gear be obtained. The final application of the gear will determine what strength characteristics will be required which subsequently determine the material and heat treatments.