How well you conduct your inspections can be the difference-maker for securing high-value contracts from your
customers. And as with most other segments of the gear industry,
inspection continues striving to attain “exact science” status. With that thought in mind, following is a look at the state of gear inspection and what rigorous inspection practices deliver—quality.
The turbines are still spinning.
They’re spinning on large wind farms
in the Great Plains, offshore in the
Atlantic and even underwater where
strong tidal currents offer new energy
solutions. These turbines spin regularly
while politicians and policy makers—
tied up in discussions on tax incentives, economic recovery and a lot of finger pointing—sit idle. Much like the auto and aerospace industries of years past, renewable energy is coping with its own set of growing pains. Analysts still feel confident that clean energy will play a significant role in the future of manufacturing—it’s just not going to play the role envisioned four to five
years ago.
In many gear transmissions, a tooth load on one flank is significantly higher and is applied for longer periods of time than for the opposite one; an asymmetric tooth shape reflects
this functional difference. This paper describes an approach that rationalizes the degree of asymmetry (or asymmetry factor K) selection to meet a variety of operating conditions and requirements for custom gear drives.
AGMA introduced ANSI/AGMA 2015–2–A06—
Accuracy Classification System: Radial System for Cylindrical Gears, in 2006 as the first major rewrite of the
double-flank accuracy standard in over 18 years. This document explains concerns related to the use of
ANSI/AGMA 2015–2–A06 as an accuracy classification system and recommends a revised system that can be of more service to the gearing industry.
Micropitting, pitting and wear are typical gear failure modes that can occur on the flanks of slowly operated and highly stressed internal gears. However, the calculation methods for the flank load-carrying capacity have mainly been established on the basis of experimental investigations of external gears. This paper describes the design and functionality of the newly developed test rigs for internal gears and shows basic results of the theoretical studies. It furthermore presents basic examples of experimental test results.