Have you ever watched the odometer on your car as you approach 100,000 miles? Something about human nature compels us to watch the odometer roll over. It may be just a fascination with numbers: Seeing all those nines line up is rare, and we don't want to miss it. but it may also have to do with the feeling of being on the verge of something that won't come again.
This is the fourth and final article in a series exploring the new ISO 6336 gear rating standard and its methods of calculation. The opinions expressed herein are those of the author as an individual. They do not represent the opinions of any organization of which he is a member.
Gear noise associated with tooth surface topography is a fundamental problem in many applications. Operations such as shaving, gear grinding and gear honing are usually used to finish the gear surface. Often, gears have to be treated by a combination of these operations, e.g. grinding and honing. This is because gear honing operations do not remove enough stock although they do create a surface lay favorable for quiet operation. See Fig. 1 for typical honing process characteristics. Gear grinding processes, on the other hand, do remove stock efficiently but create a noisy surface lay.
An analysis of possibilities for the selection of tool geometry parameters was made in order to reduce tooth profile errors during the grinding of gears by different methods. The selection of parameters was based on the analysis of he grid diagram of a gear and a rack. Some formulas and graphs are presented for the selection of the pressure angle, module and addendum of the rack-tool. The results from the grinding experimental gears confirm the theoretical analysis.
Alexander Deeb Could Have Been A Gear Engineer.
"I have always had a fascination with movement and moving parts," Deeb says. "As a boy at Christmas time, I was much more interested in how and why my new toys worked than in what they actually did. That curiosity has never left me."
Welcome to Revolutions, the column that brings you the latest, most up-to-date and easy-to-read information about the people and technology of the gear industry. Revolutions welcomes your submissions.
More and more gear shops are wrestling with the issue of whether or not solid modeling is right for their gear design work. The Q & A Page of The Gear Industry Home Page has had numerous questions asking how to model gears in solid modeling applications such as AutoCAD, Solidworks and Pr/Engineer. Given the problems people have been having, we are presenting the step-by-step process for modeling gears in Pr/Engineer, but first we thought it would be a good idea to explore the question of whether or not you should even try to design gears using Pro/Engineer or any other 3D solid modeling program.