As I write this editorial, much of America seems frozen solid. It snowed again here in Chicago yesterday, and last night the wind chill was –30ºF (–34ºC). It’s been cold like this for more than a week, and the forecasters are predicting more of the same. After a while, such a deep freeze can be depressing.
Gear designs are evolving at an ever accelerating rate, and gear manufacturers need to better understand
how the choice of materials and heat treating methods can optimize mechanical properties, balance overall cost and extend service life.
High demands for cost-effectiveness and improved product quality can be achieved via a new low pressure
carburizing process with high pressure gas quenching. Up to 50% of the heat treatment time can be saved. Furthermore, the distortion of the gear parts could be reduced because of gas quenching, and grinding costs could be saved. This article gives an overview of the principles of the process technology and the required furnace technology. Also, some examples of practical applications
are presented.
The seemingly simple process of placing a uniform chamfer on the face ends of spur and helical gears, at least for the aerospace industry, has never been a satisfactory or cost effective process.
AGMA has started to replace its 2000-A88 standard for gear accuracy with a new series of documents based largely on ISO standards. The first of the replacement AGMA standards have been published with the remainder coming in about a year. After serving as a default accuracy specification for U.S. commerce in gear products for several decades, the material in AGMA 2000-A88 is now considered outdated and in need of comprehensive revision.