The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.
Hard Gear Finishing (HGF), a relatively new technology, represents an advance in gear process engineering. The use of Computer Numerical Controlled (CNC) equipment ensures a high precision synchronous relationship between the tool spindle and the work spindle as well as other motions, thereby eliminating the need for gear trains. A hard gear finishing machine eliminates problems encountered in two conventional methods - gear shaving, which cannot completely correct gear errors in gear teeth, and gear rolling, which lacks the ability to remove stock and also drives the workpiece without a geared relationship to the master rolling gear. Such a machine provides greater accuracy, reducing the need for conventional gear crowning, which results in gears of greater face width than necessary.
A much-used method for checking the tooth thickness of an involute gear tooth is to measure the dimension over two balls placed in most nearly opposite spaces in the case of external gears, and the dimension between the balls in the case of internal gears. This measurement is then checked against a pre-calculated dimension to denote an acceptable part.
The first commandment for gears reads "Gears must have backlash!" When gear teeth are operated without adequate
backlash, any of several problems may occur, some of which may lead to disaster. As the teeth try to force their way through mesh, excessive separating forces are created which
may cause bearing failures. These same forces also produce a wedging action between the teeth with resulting high loads on the teeth. Such loads often lead to pitting and to other failures related to surface fatigue, and in some cases, bending failures.
The modern day requirement for
precision finished hobbed gears, coupled
with the high accuracy characteristics of
modern CNC hobbing machines, demands high tool accuracy.
The last decade has been a period of
far-reaching change for the metal working industry. The effect of higher lubricant costs, technical advances in machine design and increasing competition are making it essential that manufacturers of gears pay more attention to testing, selecting and controlling cutting fluid systems. Lubricant costs are not a large
percentage of the process cost relative to items such as raw materials, equipment and labor, and this small relative cost has tended to reduce the economic incentive to evaluate and to change cutting fluids.
When specifying a complete gear design, the novice designer is confronted with an overwhelming and frequently confusing group of options which must be specified. This array of specifications range from the rather vague to the very specific.
Rotary gear honing is a hard gear finishing process that was developed to improve the sound characteristics of
hardened gears by: Removing nicks and burrs; improving surface finish; and making minor corrections in tooth irregularities caused by heat-treat distortion.
In this discussion of gear roll-finishing particular attention is called to the special tooth nomenclature resulting from the interaction between the rolling die teeth and the gear teeth. To eliminate confusion the side of a gear tooth that is in contact with the "approach" side of a rolling die tooth is also considered to be the approach side. The same holds true for the "trail" side. Thus, the side of the gear tooth that is in contact with the trail side of a rolling die is also considered to be the trail side.