Pi Day took place on March 14, 2024. Our friendly neighborhood constant is used in engineering to determine the dimensions of gears, wheels, and pipes. Pi is also used in computer science to generate random numbers for cryptography, simulation, and gaming. With a tip of the cap to math enthusiasts, we offer a quick cheat sheet to pi and its fascinating history.
In terms of the tooth thickness, should we use the formulation with
respect to normal or transverse coordinate system? When normalizing
this thickness in order to normalize the backlash (backlash parameter),
we should divide by the circular pitch. Thus, when normalizing, should
this circular pitch be defined in the normal or traverse coordinate
system, depending on which formulation has been used? Is the backlash
parameter always defined with respect to the tangential plane or
normal plane for helical gears?
I have outsourced gear macrogeometry due to lack of resources. Now I received the output from them and one of the gears is with —0.8× module correction factor for m = 1.8 mm gear. Since bending root stress and specific slide is at par with specification, but negative correction factor —0.8× module — is quite high — how will it influence NVH behavior/transmission error? SAP and TIF are very close to
0.05 mm; how will that influence the manufacturing/cost?
Beginning with our June Issue, Gear Technology is pleased to present a series of full-length chapters excerpted from Dr. Hermann J. Stadtfeld’s latest scholarly — yet practical — contribution to the gear industry — Gleason Bevel Gear
Technology. Released in March, 2014 the book boasts 365 figures
intended to add graphic support of a better understanding and easier recollection of the covered material.
The focus of the following presentation is two-fold: 1) on tests of new geometric variants; and 2) on to-date, non-investigated operating (environmental) conditions. By variation of non-investigated eometric parameters and operation conditions the understanding of micropitting formation is improved. Thereby it is essential to ensure existent calculation methods and match them to results of the comparison between large gearbox tests and standard gearbox test runs to allow a safe forecast of wear due to micropitting in the future.
Gear designs are evolving at an ever accelerating rate, and gear manufacturers need to better understand
how the choice of materials and heat treating methods can optimize mechanical properties, balance overall cost and extend service life.
I must admit that after thumbing through the pages of this relatively compact volume (113 pages, 8.5 x 11 format), I read its three chapters(theory of gearing, geometry and technology, and biographical history) from rear to front. It will become obvious later in this discussion why I encourage most gear engineers to adopt this same reading sequence!
In 1961 I presented a paper, "Calculating Conjugate Helical Forms," at the semi-annual meeting of the American Gear Manufacturers Association (AGMA). Since that time, thousands of hobs, shaper cutters and other meshing parts have been designed on the basis of the equations presented in that paper. This article presents the math of that paper without the formality of its development and goes on to discuss its practical application.
Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ration under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque and power. Significant parameters in the design are the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near-optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.
In the past gear manufacturers have had to rely on hob manufacturers' inspection of individual elements of a hob, such as lead, involute, spacing, and runout. These did not always guarantee correct gears, as contained elements may cause a hob to produce gears beyond tolerance limits.