The following study presents an experimental methodology, employed to characterize the NVH behavior of plastic gears NVH in application-like operating conditions, presenting guidelines for material selection in terms of optimal gear NVH.
Polymer gears find increasing applications in the automotive industry, office machines, food machinery, and home appliances. The main reason for this success is their low cost. Their low weight, quietness of operation, and meshing without lubricant are also interesting. However, they have poor
heat resistance and are limited to rotational transmission. In order to improve the gears' behavior, glass fiber is added
This paper proposes a new method — using neural oscillators — for filtering out background vibration noise in meshing plastic gear pairs in the detection of signs of gear failure. In this paper these unnecessary frequency components are eliminated with a feed-forward control system in which the neural oscillator’s synchronization property works. Each neural oscillator is designed to tune the natural frequency to a particular one of the components.
This paper presents an original method for computing the loaded mechanical behavior of fiber reinforced polymer gears. Although thermoplastic gears are unsuitable for application transmitting
high torque, adding fibers can significantly increase their performance. The particular case of
polyamide 6 + 30% glass fibers is studied in this paper.
This paper seeks to compare the data generated from test rig shaft encoders and torque transducers when using steel-steel, steel-plastic and plastic-plastic gear combinations in order to understand the differences in performance of steel and plastic gears.