With the right selection of nonstandard center distance and tool shifting, it may be possible to use standard tools to improve the gear set capacity with a considerable reduction in cost when compared to the use of special tools.
This article presents a new spur gear 20-degree design that works interchangeably with the standard 20-degree system and achieves increased tooth bending strength and hence load carrying capacity.
Romax Technology is automating the design iteration process to allow companies to be faster to market with the highest quality, most robust gear products.
Optimizing the running behavior of bevel and hypoid gears means improving both noise behavior and load carrying capacity. Since load deflections change the relative position of pinion and ring gear, the position of the contact pattern will depend on the torque. Different contact positions require local 3-D flank form optimizations for improving a gear set.
In high precision and heavily loaded spur gears, the effect of gear error is negligible, so the periodic variation of tooth stiffness is the principal cause of noise and vibration. High contact ration spur gears can be used to exclude or reduce the variation of tooth stiffness.
In the last couple of years, many research projects dealt with the determination of load limits of cylindrical worm gears. These projects primarily focused on the load capacity of the worm wheel, whereas the worm was neglected. This contribution presents investigations regarding damages such as large scores and cracks on the flanks of case-hardened worms.