This is the final part of a three-part series on the basics of gear lubrication. It covers selection of lubricant types and viscosities, the application of lubricants, and a case history
This is a three-part article explaining the principles of gear lubrication. It reviews current knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Part 1 classifies gear tooth failures into five modes and explains the factors that a gear designer and operator must consider to avoid gear failures. It defines the nomenclature and gives a list of references for those interested in further research. It also contains an in-depth discussion of the gear tooth failure modes that are influenced by lubrication and gives methods for preventing gear tooth failures.
This article discusses an application driven approach to the computer-aided sizing of spur gear teeth. The methodology is bases on the index of tooth loading and environment of application of the gear. It employs handbook knowledge and empirical information to facilitate the design process for a novice. Results show that the approach is in agreement with the textbook data. However, this technique requires less expert knowledge to arrive at the conclusion. The methodology has been successfully implemented as a gear tooth sizing module of a parallel axis gear drive expert system.
Plastic gears are being used increasingly in applications, such as printers, cameras, small household appliances, small power tools, instruments, timers, counters and various other products. Because of the many variables involved, an engineer who designs gear trains on an occasional basis may find the design process to be somewhat overwhelming. This article outlines a systematic design approach for developing injection molded plastic spur and helical gears. The use of a computer program for designing plastic gears is introduced as an invaluable design tool for solving complex gearing equations.
Since size and efficiency are increasingly important considerations in modern machinery, the trend is gear design is to use planetary gearing instead of worm gearing and multi-stage gear boxes. Internal gearing is an important part of most of planetary gear assemblies. In external gearing, if the gears are standard (of no-modified addenda), interference rarely happens. But in an internal gearing, especially in some new types of planetary gears, such as the KHV planetary, the Y planetary, etc., (1) various types of interference may occur. Therefore, avoiding interference is of significance for the design of internal gearing.
The first part of this article describes the analytical design method developed by the author to evaluate the load capacity of worm gears.
The second part gives a short description of the experimental program and testing resources being used at CETIM to check the basic assumptions of the analytical method; and to determine on gears and test wheels the surface pressure endurance limits of materials that can be used for worm gears.
The end of the article compares the results yielded by direct application of the method and test results.
One of the most frequently neglected areas of gear design is the determination of "form diameter". Form diameter is that diameter which specifies the transition point between the usable involute profile and the fillet of the tooth. Defining this point is important to prevent interference with the tip of the mating gear teeth and to enable proper preshave machining when the gear is to be finished with a shaving operation.
How dynamic load affects the pitting fatigue life of external spur gears was predicted by using NASA computer program TELSGE. TELSGE was modified to include an improved gear tooth stiffness model, a stiffness-dynamic load iteration scheme and a pitting-fatigue-life prediction analysis for a gear mesh. The analysis used the NASA gear life model developed by Coy, methods of probability and statistics and gear tooth dynamic loads to predict life. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact.
In principal, the design of internal helical gear teeth is the same as that for external helical gears. Any of the basic rack forms used for external helical gears may be applied to internal helical gears. The internal gear drive, however, has several limitations; not only all those which apply to external gears, but also several others which are peculiar to internal gears. As with external gears, in order to secure effective tooth action, interferences must be avoided. The possible interferences on an internal gear drive are as follows:
1. Involute interference. To avoid this, all of the working profile of the internal tooth must be of involute form.
Primitive gears were known and used well over 2,000 years ago, and gears have taken their place as one of the basic machine mechanisms; yet, our knowledge and understanding of gearing principles is by no means complete. We see the development of faster and more reliable gear quality assessment and new, more productive manufacture of gears in higher materials hardness states. We have also seen improvement in gear applications and design, lubricants, coolants, finishes and noise and vibration control. All these advances push development in the direction of smaller, more compact applications, better material utilization and improved quietness, smoothness of operation and gear life. At the same time, we try to improve manufacturing cost-effectiveness, making use of highly repetitive and efficient gear manufacturing methods.