Suppliers are working hard to make
sure their heat treating equipment is controllable, repeatable and efficient,
and manufacturers continue to incorporate technology that gives heat treaters and their customers more information about what's going on inside the magic box.
Effective case depth is an important factor and goal in gas carburizing, involving complicated procedures in the furnace and requiring precise control of many thermal parameters. Based upon diffusion theory and years of carburizing experience, this
paper calculates the effective case depth governed by carburizing temperature, time, carbon content of steel, and carbon potential of atmosphere. In light of this analysis,
carburizing factors at various temperatures and carbon potentials for steels with different
carbon content were calculated to determine the necessary carburizing cycle time.
This methodology provides simple (without computer simulation) and practical guidance
of optimized gas carburizing and has been applied to plant production. It shows that measured, effective case depth of gear parts covering most of the industrial application range (0.020 inch to over 0.250 inch) was in good agreement with the calculation.
The oil industry is (pardon the pun) tanking. That may conjure up horrific images of other industries following suit in a domino effect of collective collapse into the overabundant oil slick the industry is currently drowning in, but not everyone is getting knocked down alongside the oil sector.
In this special section, our editors have gathered recent news and information related to the heat treatment of gears. Here you’ll find a comprehensive assortment of news and upcoming events that will help you understand the various heat treatment processes available for gears and choose the best option for your projects, whether you heat treat in-house or send your gears to a commercial heat treating provider.
This issue, GT Extras brings you "Heat Treat and Induction Hardening of Industrial Gears," a treasure trove of heat treating related technical articles and a call for help in preparation for AGMA's 100th anniversary.
Contact fatigue and bending fatigue are two main failure modes of steel gears, while surface pitting and spalling are two common contact fatigue failures -- caused by alternating subsurface shear stresses from the contact load between two gear mates. And when a gear is in service under cyclic load, concentrated bending stresses exist at the root fillet -- the main driver of bending fatigue failures. Induction hardening is becoming an increasingly popular response to these problems, due to its process consistency, reduced energy consumption, clean environment and improved product quality -- but not without issues of its own (irregular residual stresses and bending fatigue). Thus a new approach is proposed here that flexibly controls the magnitude of residual stress in the regions of root fillet and tooth flank by pre-heating prior to induction hardening. Using an external spur gear made of AISI 4340 as an example, this new concept/process is demonstrated using finite element modeling and DANTE commercial software.
Heat treating is one of the most critical operations in the manufacture of quality gears. Everything can be done to perfection, but if the heat treating isn’t right, all of your hard
work and efforts are wasted. We know how
important it is for gear manufacturers to find the right heat treating service provider. That’s why we’ve compiled this Heat Treat Resource Guide -- the only directory of heat treat service
providers that’s specific to the gear
industry. The companies listed here are all interested in working with gear manufacturers, and many of them have specialties and capabilities that are uniquely suited to the types of products you manufacture.
Precision components (industrial bearing races and automotive gears) can distort during heat treatment due to effects of free or unconstrained oil quenching. However, press quenching can be used to minimize these effects. This quenching method achieves the relatively stringent geometrical requirements stipulated by industrial manufacturing specifications. As performed on a wide variety of steel alloys, this specialized quenching technique is presented here, along with a case study showing the effects of prior thermal history on the distortion that is generated during press quenching.