At first sight the appearance of 5-axis milling for bevel gears opens new possibilities in flank form
design. Since in comparison to existing machining methods applying cutter heads no kinematic
restrictions exist for 5-axis milling technology, any flank form can be machined.
Nevertheless the basic requirements for bevel gears did not change. Specifications and functional
requirements like load carrying capacity and running behavior are still increasing demands for design
and manufacturing. This paper describes the demands for gear design and gives an overview about
different design principles in the context of the surrounding periphery of the gear set.
In the design process of transmissions, one major criterion is the
resulting noise emission of the powertrain due to gear excitation.
Within the past years, much investigation has shown that the
noise emission can be attributed to quasi-static transmission error.
Therefore, the transmission error can be used for a tooth contact
analysis in the design process, as well as a characteristic value for
quality assurance by experimental inspections.
THE FINAL CHAPTER
This is the last in the series of chapters excerpted from Dr. Hermann J. Stadtfeld's Gleason Bevel Gear Technology - a book written for specialists in planning, engineering, gear design and manufacturing. The work also addresses the technical
information needs of researchers, scientists and students who deal with the theory and practice of bevel gears and other angular gear systems. While all of the above groups are of course of invaluable importance to the gear industry, it is surely the students who hold the key to its future. And with that knowledge it is reassuring to hear from Dr. Stadtfeld of
the enthusiastic response he has received from younger readers
of these chapter installments.
The cutting process consists of either
a roll only (only generating motion), a plunge only or a combination of plunging and rolling. The material removal and flank forming due to a pure generating motion is demonstrated in the simplified sketch in Figure 1 in four steps. In the start roll position (step 1), the cutter
profile has not yet contacted the work. A rotation of the work around its axis (indicated by the rotation arrow) is coupled with a rotation of the cutter around the axis of the generating gear (indicated by
the vertical arrow) and initiates a generating motion between the not-yet-existing tooth slot of the work and the cutter head (which symbolizes one tooth of the generating gear).
Could you explain to me the difference between spiral bevel gear process face hobbing-lapping, face milling-grinding and Klingelnberg HPG? Which one is better for noise, load capacity and quality?
Chapter 2, Continued
In the previous sections, development of conjugate, face milled as well as face hobbed bevel gearsets - including the application of profile and length crowning - was demonstrated. It was mentioned during that demonstration that in order to optimize the common surface area, where pinion and gear flanks have meshing contact (common flank working area), a profile shift must be introduced. This concluding section of chapter 2 explains the principle of profile shift; i.e. - how it is applied to bevel and hypoid
gears and then expands on profile side shift, and the frequently used root angle correction which - from its gear theoretical
understanding - is a variable profile shift that changes the shift factor along the face width. The end of this section elaborates on
five different possibilities to tilt the face cutter head relative to the generating gear, in order to achieve interesting effects on the
bevel gear flank form. This installment concludes chapter 2 of the Bevel Gear Technology book that lays the foundation of the following
chapters, some of which also will be covered in this series.
In the previous sections, the development of conjugate bevel gearsets via hand calculations was
demonstrated. The goal of this exercise was to encourage the reader to gain a basic understanding of
the theory of bevel gears. This knowledge will help gear engineers to better judge bevel gear design
and their manufacturing methods.
In order to make the basis of this learning experience even more realistic, this chapter will convert
a conjugate bevel gearset into a gearset that is suitable in a real-world application. Length and profile
crowning will be applied to the conjugate flank surfaces. Just as in the previous chapter, all computations
are demonstrated as manual hand calculations. This also shows that bevel gear theory is not as
complicated as commonly assumed.
The calculation begins with the computation of the ring gear
blank data. The geometrically relevant parameters are shown in Figure 1. The position of the teeth relative to the blank coordinate system of a bevel gear blank is satisfactorily defined with...
The question is quite broad, as there
are different methods for setting various types of gears and complexity of
gear assemblies, but all gears have a few things in common.