Electrification has already started to have a noticeable impact on the global automotive industry. As a result, the drivetrains of hybrid (HEV) and full electric vehicles (EV) are facing many challenges, like increased requirements for NVH in high speed e-Drives and the need for performance improvements to deal with recuperation requirements. Motivated by the positive validation results of surface densified manual transmission gears which are also applicable for dedicated hybrid transmissions (DHTs) like
e-DCTs, GKN engineers have been looking for a more challenging application
for PM gears within those areas.
Gear Industry Steps Up to Automation
Challenges in Auto Industry. Automotive parts are always moving. They are zipping across conveyors, smashing into each other in bins and traveling across the production chain before ending up inside an automobile. For gears, this can be a somewhat precarious situation as they tend to run best when they're free from nicks, abrasions, cracks or other damages.
Which transmission system will come out on top is a hot topic in the automotive community. With multiple transmission-centric conferences on the horizon, there will be plenty of debate, but how much will the answer actually affect gear manufacturers, and when?
A best practice in gear design is to limit the amount of backlash to a minimum value needed to accommodate
manufacturing tolerances, misalignments, and deflections, in order to prevent the non-driving side of the teeth to make contact and rattle. Industry standards, such as ANSI/AGMA 2002 and DIN3967, provide reference values of minimum backlash to be used in the gear design. However, increased customers' expectations in vehicle noise eduction have pushed backlash and allowable manufacturing tolerances to even lower limits. This is especially true in the truck market, where engines are quieter because they run at lower speeds to improve fuel economy, but they quite often run
at high torsional vibration levels. Furthermore, gear and shaft arrangements in truck transmissions have become more complex due to increased number of speeds and to improve efficiency. Determining the minimum amount of backlash is quite a challenge. This paper presents an investigation of minimum backlash values of helical gear teeth applied to a light-duty pickup truck transmission. An analytical model was developed to calculate backlash limits of each gear pair when not transmitting load, and thus susceptible to generate rattle noise, through different transmission power paths.
A statistical approach (Monte Carlo) was used since a significant number of factors affect backlash, such as tooth
thickness variation; center distance variation; lead; runout and pitch variations; bearing clearances; spline clearances; and shaft deflections and misalignments. Analytical results identified the critical gear pair, and power path, which was confirmed experimentally on a transmission. The approach presented in this paper can be useful to design gear pairs
with a minimum amount of backlash, to prevent double flank contact and to help reduce rattle noise to lowest levels.
With the ongoing push towards electric vehicles (EVs), there is likely to be increasing focus on the noise impact of the gearing required for the transmission of power from the (high-speed) electric motor to the road. Understanding automotive noise,
vibration and harshness (NVH) and methodologies for total in-vehicle noise presupposes relatively large, internal combustion (IC) contributions, compared to gear noise. Further, it may be advantageous to run the electric motors at significantly higher rotational speed than conventional automotive IC engines, sending geartrains into yet higher speed ranges. Thus the move to EV or hybrid electric vehicles (HEVs) places greater or different demands on geartrain noise. This work combines both a traditional NVH approach (in-vehicle and rig noise, waterfall plots, Campbell diagrams and Fourier analysis) - with highly detailed transmission error measurement and simulation of the complete drivetrain - to fully understand noise sources
within an EV hub drive. A detailed methodology is presented, combining both a full series of tests and advanced simulation to troubleshoot and optimize an EV hub drive for noise reduction.
“Highway vehicles release about
1.7 billion tons of greenhouse
gases (GHGs) into the atmosphere
each year — mostly in the form of
carbon dioxide (CO2) — contributing
to global climate change. The
CO2 emissions of a car are directly
proportional to the quantity of
fuel consumed by an engine. In 2013, U.S. greenhouse gas emissions from transportation were second only to the electricity sector — an increase of about 16% since 1990.” (EPA.GOV).
Beveloid gears are used to accommodate a small shaft angle. The manufacturing technology used for beveloid gearing
is a special setup of cylindrical gear cutting and grinding machines. A new development, the so-called Hypoloid
gearing, addresses the desire of gear manufacturers for more freedoms. Hypoloid gear sets can realize shaft angles between zero and 20° and at the same time, allow a second shaft angle (or an offset) in space that provides the freedom to connect two points in space.