The geometry of the bevel gear is quite complicated to describe mathematically, and much of the overall surface topology of the tooth flank is dependent on the machine settings and cutting method employed. AGMA 929-A06 — Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius — lays out a practical approach for predicting the approximate top-land thicknesses at certain points of interest — regardless of the exact machine settings that will generate the tooth form. The points of interest that AGMA 929-A06 address consist of toe, mean, heel, and point of involute lengthwise curvature. The following method expands upon the concepts described in AGMA 929-A06 to allow the user to calculate not only the top-land thickness, but the more general case as well, i.e. — normal tooth thickness anywhere along the face and profile of the bevel gear tooth. This method does not rely on any additional machine settings; only basic geometry of the cutter, blank, and teeth are required to calculate fairly accurate tooth thicknesses. The tooth thicknesses are then transformed into a point cloud describing both the convex and concave flanks in a global, Cartesian coordinate system. These points can be utilized in any modern computer-aided design software package to assist in the generation of a 3D solid model; all pertinent tooth macrogeometry can be closely simulated using this technique. A case study will be presented evaluating the accuracy of the point cloud data compared to a physical part.
Gears with a diametral pitch 20 and
greater, or a module 1.25 millimeters
and lower, are called fine-pitch or low-module gears. The design of these gears has its own specifics.
Faithful Addendum readers are accustomed to finding upbeat, whimsical and oddball stories about gears in this
space. What follows is not about gears, exactly. Rather, it is, as opposed to the usual bleak news about America losing its manufacturing mojo—a look at a positive, hopeful development in that regard.