For maximum life in carburized and ground gearing, I have been advised that fully grinding a radius into the root gives maximum resistance against fatigue failures. Others have advised that a hobbed and unground radius root form is best. Which is best, and why?
In this paper, an accurate FEM analysis has been done of the “true” stress at tooth root of spur gears in the function of the gear geometry. The obtained results confirm the importance of these differences.
In the 1960's and early 1970's, considerable work was done to identify the various modes of damage that ended the lives of rolling element bearings. A simple summary of all the damage modes that could lead to failure is given in Table 1. In bearing applications that have insufficient or improper lubricant, or have contaminants (water, solid particles) or poor sealing, failure, such as excessive wear or vibration or corrosion, may occur, rather than contact fatigue. Usually other components in the overall system besides bearings also suffer. Over the years, builders of transmissions, axles, and gear boxes that comprise such systems have understood the need to improve the operating environment within such units, so that some system life improvements have taken place.
November 1-3. SME Gear Processing and Manufacturing Clinic, Sheraton Meridian, Indianapolis, IN.
November 5-10. international Conference on Gearing, Zhengzhou, China
Your May/June issue contains a
letter from Edward Ubert of Rockwell
International with some serious questions
about specifying and measuring tooth thickness.
Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces
of the gear teeth. Its purpose is to correct errors in index, helical angle, tooth profile and eccentricity.