Robert Errichello
heads
his own gear consulting firm,
GEARTECH, and is founder
of GEARTECH Software,
Inc. He has over 50 years of
industrial experience. He has
been a consultant to the gear
industry for the past 37 years
and to over 50 wind turbine manufacturers,
purchasers, operators, and researchers.
He has taught courses in material science,
fracture mechanics, vibration, and machine
design at San Francisco State University and
the University of California at Berkeley. He
has presented numerous seminars on design,
analysis, lubrication, and failure analysis of
gears and bearings to professional societies,
technical schools, and the gear, bearing,
and lubrication industries. A graduate of the
University of California at Berkeley, Errichello
holds BS and MS degrees in mechanical
engineering and a Master of Engineering
degree in structural dynamics. He is a member
of several AGMA Committees, including the
AGMA Gear Rating Committee, AGMA/AWEA
Wind Turbine Committee, ASM International,
ASME Power Transmission and Gearing
Committee, STLE, NREL GRC, and the Montana
Society of Engineers. Bob has published over
80 articles on design, analysis, and application
of gears, and is the author of three widely used
computer programs for design and analysis
of gears. He is technical editor for GEAR
TECHNOLOGY and STLE Tribology Transactions.
Errichello is recipient of the AGMA TDEC
Award, the AGMA E.P. Connell Award, the
AGMA Lifetime Achievement Award, the STLE
Wilbur Deutch Memorial Award, the 2015
STLE Edmond E. Bisson Award, and the AWEA
Technical Achievement Award.
This report investigates the wear morphology on the large end of tapered rollers and the inner ring's large end rib on a planet carrier TRB from a multi-megawatt wind turbine gearbox. The literature on abrasive wear has many classifications, including 2-body abrasion, 3-body abrasion, scratches, grooving abrasion, rolling abrasion, cutting abrasion, and plowing abrasion. For this analysis, we have selected grooving abrasion, a common problem in wind turbine gearboxes and a prominent failure mode on many bearings, particularly planetary carrier bearings and planet bearings. Grooving abrasion is frequently observed on cylindrical roller bearings (CRB) and tapered roller bearings (TRB). Fitzsimmons and Clevenger conducted tests on roller end/rib wear for TRBs with contaminated gear oil, and they provided an excellent explanation of the mechanism.
This report discusses grain size and its influence on metallurgical properties including its effect on yield strength, ultimate strength, fatigue strength, and fracture toughness. Also discussed are manufacturing issues such as heat treatment, hardenability, and machinability.
The objective of this report is to determine the origin of the phrase “profile shift.” Several technical books, technical papers, and industrial standards were reviewed for nomenclature associated with profile shift. The phrase “profile shift” translates directly to the German term “Profilverschiebung,” which originated in the last quarter of the 19th century. At first, profile shift was used to avoid undercutting pinions with small numbers of teeth. Later, it was recognized that profile shift improved the load capacity of the gear mesh and extended the service life of manufacturing tools.
The conjugacy of meshing gears is one of the most important attributes of gears because it ensures a constant velocity ratio that gives smooth, uniform transmission of motion and torque. Some of the world’s greatest gear theoreticians like Earle Buckingham, Wells Coleman, and John Colbourne laid the foundation for understanding conjugacy. Their teachings and interpretations of the law of gearing have been used by generations of gear engineers to design and manufacture gear transmissions for almost everything that is mechanically actuated.
An overview of the incubation, nucleation
and growth, and morphology of this
common failure mode, along with the
appropriate terminology to describe it.
The objective of this paper is to improve the methodology for determining the tooth flank temperature. Two methods are proposed for assessing scuffing risk when applying AGMA 925 for high-speed gears. Both methods provide similar results.
I felt a tap on my shoulder. Turning, I saw the chief draftsman who said, "You're in charge of gears." And he walked away. Dumbfounded, I stared at the back of his head, and sat down at my drafting board. It was November, 1963, shortly after JFK was assassinated, and after I was discharged from the U.S. Army.
The purpose of this article is to provide an overview of proven books or
standards dealing with failure analysis. Following you will find a short description of ten books or standards. At the end of the document you will find an overview and a detailed reference list.