At the dawn of the Industrial
Revolution, so-called mechanics
were tasked with devising the precise methods that would make mass production possible. The result was the first generation of machine tools, which in turn required improved tooling and production methods.
The turbines are still spinning.
They’re spinning on large wind farms
in the Great Plains, offshore in the
Atlantic and even underwater where
strong tidal currents offer new energy
solutions. These turbines spin regularly
while politicians and policy makers—
tied up in discussions on tax incentives, economic recovery and a lot of finger pointing—sit idle. Much like the auto and aerospace industries of years past, renewable energy is coping with its own set of growing pains. Analysts still feel confident that clean energy will play a significant role in the future of manufacturing—it’s just not going to play the role envisioned four to five
years ago.
A computational fluid dynamics (CFD) method is adapted, validated and applied to spinning gear systems with emphasis on predicting windage losses.
Several spur gears and a disc are studied. The CFD simulations return good agreement with measured windage power loss.
Natural resources—minerals, coal, oil, agricultural products, etc.—are the
blessings that Mother Earth confers upon the nations of the world. But it takes unnaturally large gears to extract them.
Due to its economical efficiency, the gear shaving process is a widely used process for soft finishing of gears. A simulation technique allows optimization of the process.
Fig. 1 shows the effects of positive and negative rake on finished gear teeth. Incorrect positive rake (A) increase the depth and decreases the pressure angle on the hob tooth. The resulting gear tooth is thick at the top and thin at the bottom. Incorrect negative rake (B) decreases the depth and increases the pressure angle. This results in a cutting drag and makes the gear tooth thin at the top and thick at the bottom.