In helicopter applications, the two-piece gear is typically joined by welding, bolts, or splines. In the case of the U.S. Army CH-47D Chinook helicopter, a decision was made to eliminate these joints through the use of integral design. Integral shaft
spiral bevel gears must be designed such that the shaft does not interfere with gear tooth cutting and grinding. This paper discusses techniques to iterate in the design stage before
manufacturing begins.
In order to reduce costs for development and production, the objective in gearbox development and design is to predict running and noise behavior of a gearbox without manufacturing a prototype and running expensive experimental investigations. To achieve this objective, powerful simulation models have to be set up in a first step. Afterwards, those models have to be qualified and compared to experimental investigations. During the investigation procedure of gearboxes, there are two possibilities to evaluate the running and noise behavior: quasi-static and dynamic investigations. In times of engine downsizing, e-mobility and lightweight design, the dynamic excitation behavior is becoming increasingly important.