A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.
I sat down to write this editorial about my father, Harold Goldstein, as he approached his 80th birthday in October. I had meant it to be a celebration of his nearly 65 years in the machine tool business. Unfortunately, on August 26, as I was working on it, my father passed away after a long battle with emphysema. This editorial has now become a memorial as well as a celebration.
The chamfering and deburring operations on gear teeth have become more important as the automation of gear manufacturing lines in the automotive industry have steadily increased. Quieter gears require more accurate chamfers. This operation also translates into significant coast savings by avoiding costly rework operations. This article discusses the different types of chamfers on gear teeth and outlines manufacturing methods and guidelines to determine chamfer sizes and angles for the product and process engineer.
Earlier this year, a relative of mine, Sidney Mandell, tragically passed away. I had the good fortune to serve with Sidney on the Board of Directors and the Executive Committee of the Machinery Dealers National Association (MDNA). Though he started before me, his MDNA career and mine overlapped for about 2 years. As I think back on the many things I learned form him, one of his favorite phrases keeps come to mind: "We walk in the footsteps of those who have gone before us."
In today's industrial marketplace, deburring and chamfering are no longer just a matter of cosmetics. The faster speeds at which transmissions run today demand that gear teeth mesh as smoothly and accurately as possible to prevent premature failure. The demand for quieter gears also requires tighter tolerances. New heat treating practices and other secondary gear operations have placed their own set of demands on manufacturers. Companies that can deburr or chamfer to these newer, more stringent specifications - and still keep costs in line - find themselves with a leg up on their competition.
For this interview, we spoke with George Wyss, president, and Dennis Richmond, vice president of Reishauer Corporation about gear grinding and its place in gear manufacturing today.
Why Brushes?
In this age of hi-tech, robots, automatic machines, machining cells, etc., is there a niche somewhere for power brushes? Let me answer by asking another question. What tool does the gear manufacturer have in his arsenal that allows him to deburr green gears, hardened gears, hobbed gears, ground gears and shaved gears? What tool allows him to deburr powder metal gears - green and sintered - brass gears, bronze gears, stainless gears made of exotic materials such as inconel, waspaloy, or hastaloy, and fiber and plastic gears? How about spur gears, helical gears, sprockets, both internal and external splines, clutch teeth and pump gears?
One of the current research
activities here at California State University at Fullerton is systematization of existing knowledge of design of planetary gear trains.