The popular perception today is that technological advancement is an engine running almost out of control. New products and processes are developing faster than we can keep up with them, as anyone who has had a new computer system crash into obsolescence practically before it's out of the box can tell you. But that's not the case everywhere. Transmission technology, for example.
simplified equations for backlash and roll test center distance are derived. Unknown errors in measured tooth thickness are investigate. Master gear design is outlined, and an alternative to the master gear method is described. Defects in the test radius method are enumerated. Procedures for calculating backlash and for preventing significant errors in measurement are presented.
I noted with interest the beginning of Gear Technology's three-part series on ISO 9000 certification. I also recently attended Brown & Sharpe's/Leitz gear metrology seminar. Both events caused me to smile and reflect.
Could the tip chamfer that manufacturing people usually use on the tips of gear teeth be the cause of vibration in the gear set? The set in question is spur, of 2.25 DP, with 20 degrees pressure angle. The pinion has 14 teeth and the mating gear, 63 teeth. The pinion turns at 535 rpm maximum. Could a chamfer a little over 1/64" cause a vibration problem?
The purpose of gear inspection is to:
Assure required accuracy and quality,
Lower overall cost of manufacture by controlling rejects and scrap,
Control machines and machining practices and maintain produced accuracy as machines and tools wear,
Determine hear treat distortions to make necessary corrections.
Metrology is a vital component of gear manufacturing. Recent changes in this area, due in large part to the advent of computers, are highlighted in this article by comparison with more traditional methods.
This article presents an efficient and direct method for the synthesis of compound planetary differential gear trains for the generation of specified multiple speed ratios. It is a train-value method that utilizes the train values of the integrated train components of the systems to form design equations which are solved for the tooth numbers of the gears, the number of mating gear sets and the number of external contacts in the system. Application examples, including vehicle differential transmission units, rear-end differentials with unit and fractional speed ratios, multi-input functions generators and robot wrist joints are given.
March 19-22, 1989. first International Applied Mechanical Systems Design Conference. Convention Center, Nashville, TN.
March 28-30, 1989. Gear Design Seminar, University of Northern Iowa
In the field of large power transmission gear units for heavy machine industry, the following two development trends have
been highly influential: use of case hardened gears and a branching of the power flow through two or more ways.