In the design of any new gear drive, the performance of previous similar designs is very carefully considered. In the course of evaluating one such new design, the authors were faced with the task of comparing it with two similar existing systems, both of which were operating quite successfully. A problem arose, however, when it was realized that the bending stress levels of the two baselines differed substantially. In order to investigate these differences and realistically compare them to the proposed new design, a three-dimensional finite-element method (FEM) approach was applied to all three gears.
Gears are currently run at high speed and under high load. It is a significant problem to develop lubricants and gears with high load-carrying capacity against scoring. The particles of molybdenum disulfide have been considered to increase the scoring resistance of the gears. The wear characteristics and the scoring resistance of the gears lubricated with MoS2 paste and MoS2 powder have been investigated. (1) However, there are few investigations on the performance of the gears coated with MoS2 film with respect to scoring.
The most conclusive test of bevel and hypoid gears is their operation under normal running conditions in their final mountings. Testing not only maintains quality and uniformity during manufacture, but also determines if the gears will be satisfactory for their intended applications.
Anyone involved in the design, manufacture and use of gears is concerned with three general characteristics relative to their application: noise, accuracy, and strength or surface durability. In the article, we will be dealing with probably the most aggravating of the group, gear noise.
Much of the information in this article
has been extracted from an AGMA
Technical Paper, "What Single Flank
Testing Can Do For You", presented in
1984 by the author
Presumably, everyone who would be interested in this subject is already somewhat familiar with testing of gears by traditional means. Three types of gear inspection are in common use: 1) measurement of gear elements and relationships, 2) tooth contact pattern checks and 3) rolling composite checks. Single Flank testing falls into this last category, as does the more familiar Double Flank test.