The performance of metal surfaces can be dramatically enhanced by the thermal process of rapid surface melting and re-solidification (RMRS). When the surface of a metal part (for instance, a gear) is melted and re-solidified in less than one thousandth of a second, the resulting changes in the material can lead to:
Increased wear and corrosion resistance,
Improved surface finish and appearance,
Enhanced surface uniformity and purity, and
Sealing of surface cracks and pores.
Quality gear manufacturing depends on controlled tolerances and geometry. As a result, ferritic nitrocarburizing has become the heat treat process of choice for many gear manufacturers. The primary reasons for this are:
1. The process is performed at low temperatures, i.e. less than critical.
2. the quench methods increase fatigue strength by up to 125% without distorting. Ferritic nitrocarburizing is used in place of carburizing with conventional and induction hardening.
3. It establishes gradient base hardnesses, i.e. eliminates eggshell on TiN, TiAIN, CrC, etc.
In addition, the process can also be applied to hobs, broaches, drills, and other cutting tools.
Gears are extremely complex shapes. Coordinate measuring machines, or CMMs, are designed to measure complex shapes. It seems to follow that CMMs world, therefore, be the ideal tool for measuring gears. But the answer is not so simple.
Welcome to Revolutions, the column that brings you the latest, most up-to-date and easy-to-read information about the people and technology of the gear industry.
New innovations in the management of hear treating parts washers and yielding powerful, unexpected benefits. Simply, cost effective shop floor practices are being combined in new ways to deliver big quality improvements and significant help to the bottom line. Employing these steps early in the process can dramatically cut waste hauling expenses and greatly reduce environmental liabilities while continuously producing cleaner parts.
In his Handbook of Gear Design (Ref.1), Dudley states (or understates): "The best gear people around the world are now coming to realize that metallurgical quality is just as important as geometric quality." Geometric accuracy without metallurgical integrity in any highly stressed gear or shaft would only result in wasted effort for all concerned - the gear designer, the manufacturer, and the customer - as the component's life cycle would be prematurely cut short. A carburized automotive gear or shaft with the wrong surface hardness, case depth or core hardness may not even complete its basic warranty period before failing totally at considerable expense and loss of prestige for the producer and the customer. The unexpected early failure of a large industrial gear or shaft in a coal mine or mill could result in lost production and income while the machine is down since replacement components may not be readily available. Fortunately, this scenario is not common. Most reputable gear and shaft manufacturers around the world would never neglect the metallurgical quality of their products.
High-speed machining using carbide has been used for some decades for milling and turning operations. The intermittent character of the gear cutting process has delayed the use of carbide tools in gear manufacturing. Carbide was found at first to be too brittle for interrupted cutting actions. In the meantime, however, a number of different carbide grades were developed. The first successful studies in carbide hobbing of cylindrical gears were completed during the mid-80s, but still did not lead to a breakthrough in the use of carbide cutting tools for gear production. Since the carbide was quite expensive and the tool life was too short, a TiN-coated, high-speed steel hob was more economical than an uncoated carbide hob.
So, you've been assigned the task to buy an induction heating system for heat treating: It's an intimidating, but by no means impossible, assignment. With the help of the information in this article, you could be able to develop common ground with your supplier and have the tools to work with him or her to get the right machine for your jobs.
Many potential problems are not apparent when using new induction heat treating systems. The operator has been trained properly, and setup parameters are already developed. Everything is fresh in one's mind. But as the equipment ages, personnel changes or new parts are required to be processed on the old equipment ages, personnel changes or new parts are required to b processed on the old equipment, important information can get lost in the shuffle.