Natural resources—minerals, coal, oil, agricultural products, etc.—are the
blessings that Mother Earth confers upon the nations of the world. But it takes unnaturally large gears to extract them.
The diagnosis and prevention of gear tooth and bearing wear requires the discovery and understanding of the particular mechanism of wear, which in turn indicates the best method of prevention. Because a gearbox is a tribologically dependent mechanism, some understanding of gear and bearing tribology is essential for this process. Tribology is the general term for the study and practice of lubrication, friction and wear. If tribology is neglected or considered insignificant, poor reliability and short life will result.
This is the final part of a three-part series on the basics of gear lubrication. It covers selection of lubricant types and viscosities, the application of lubricants, and a case history
What follows is Part 2 of a three-part article covering the principles of gear lubrication. Part 2 gives an equation for calculating the lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication regime. An equation for Blok's flash temperature, which is used for predicting the risk of scuffing, is also given.
This is a three-part article explaining the principles of gear lubrication. It reviews current knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Part 1 classifies gear tooth failures into five modes and explains the factors that a gear designer and operator must consider to avoid gear failures. It defines the nomenclature and gives a list of references for those interested in further research. It also contains an in-depth discussion of the gear tooth failure modes that are influenced by lubrication and gives methods for preventing gear tooth failures.
The effect of various lubricant factors on wormgear efficiency has been evaluated using a variety of gear types and conditions. In particular, the significant efficiency improvements
afforded by certain types of synthetic
lubricants have been investigated to determine the cause of these improvements. This paper describes broad wormgear testing, both in the
laboratory and in service, and describes the extent to which efficiency can be affected by
changes in the lubricant; the effects of viscosity, viscosity index improvers and, finally, synthetic lubricants are discussed. The work concludes that lubricant tractional properties
can play a significant role in determining gear efficiency characteristics.