The focus of the following presentation is two-fold: 1) on tests of new geometric variants; and 2) on to-date, non-investigated operating (environmental) conditions. By variation of non-investigated eometric parameters and operation conditions the understanding of micropitting formation is improved. Thereby it is essential to ensure existent calculation methods and match them to results of the comparison between large gearbox tests and standard gearbox test runs to allow a safe forecast of wear due to micropitting in the future.
Forest City Gear applies advanced gear shaping and inspection technologies to help solve difficult lead crown correction challenges half a world away. But these solutions can also benefit customers much closer to home, the company says. Here's how…
Flank breakage is common in a number of cylindrical and bevel gear applications. This paper introduces a relevant, physically based calculation method to evaluate flank breakage risk vs. pitting
risk. Verification of this new method through testing is demonstrably shown.
Understanding the morphology of micropitting is critical in determining the root cause of failure. Examples of micropitting in gears and rolling-element bearings are presented to illustrate morphological variations that can occur in practice.
An experimental and theoretical analysis of worm gear sets with contact patterns of differing sizes, position and flank type for new approaches to calculation of pitting resistance.
Gear tooth wear and micropitting are very difficult phenomena to predict
analytically. The failure mode of micropitting is closely correlated to the lambda ratio. Micropitting can be the limiting design parameter
for long-term durability. Also, the failure mode of micropitting can progress to wear or macropitting, and then go on to manifest more severe failure modes, such as bending. The results of a gearbox test and manufacturing process development program will be presented to evaluate super-finishing and its impact on micropitting.
The first edition of the international calculation method for micropitting—ISO TR 15144–1:2010—was just published
last December. It is the first and only official, international calculation method established for dealing with
micropitting. Years ago, AGMA published a method for the calculation of oil film thickness containing some comments
about micropitting, and the German FVA published a calculation method based on intensive research results. The FVA and the AGMA methods are close to the ISO TR, but the calculation of micropitting safety factors is new.
If you make hardened gears and have not seen any micropitting, then you haven’t looked closely enough. Micropitting is one of the modes of failure that has more recently become of concern to gear designers and manufacturers. Micropitting in itself is not necessarily a problem, but it can lead to noise and sometimes other more serious forms of failure. Predicting when this will occur is the challenge
facing designers.
In this study, limiting values for the load-carrying-capacity of fine-module gears within the module range 0.3–1.0 mm were determined and evaluated by comprehensive, experimental investigations that employed technical, manufacturing and material influence parameters.